假设系统中有4个cpu, 同时有一个变量在各个CPU之间是共享的,每个cpu都有访问该变量的权限。
本文主要介绍在 PowerVM 虚拟化环境下,微分区 CPU 利用率的监控方法,并且深入讨论在虚拟化环境下,CPU 的调度原理。 普通 LPAR CPU 利用率的查看 在 AIX 操作系统中,可以监控 CPU 利用率的命令有很多,最常用的 nmon、topas、vmstat、sar –u 等等。 在 单 CPU 线程(SMT OFF),单线程应用的环境下,CPU 利用率的输出结果很容易看懂,如下:User% 代表系统中用户进程占用的 CPU 比率;Sys% 代表系统调用所占的 CPU 比率,Wait% 代
内存显示为126976MB,126976/1024=124GB ,内存为124GB
所以,将进程与 CPU 进行绑定可以提高 CPU 缓存的命中率,从而提高性能。而进程与 CPU 绑定被称为:CPU 亲和性。
本文主要内容是介绍移动端优化会涉及到的绑定cpu(cpu affinity)[2,3]的概念和相关验证实验。
最近在研究Linux系统负载的时候,接触到一些关于CPU信息查看的知识,和大家分享一下。通过对/proc/cpuinfo文件中的参数的分析,也学到了不少东西。
使用 github.com/shirou/gopsutil/disk 库获取机器下不同磁盘分区的内容,可按如下:
有时候我们需要在终端下查看系统的相关信息,就需要用到sysctl命令,例如我的电脑是Mac,我要查看CPU的相关信息,命令和输出结果如下:
在多核系统中,为了更好的利用多CPU并行能力,进程调度器可以将进程负载尽可能的平均到各个CPU上。再具体实现中,如何选择将进程迁移到的目标CPU,除了考虑各个CPU的负载平衡,还需要将Cache利用纳入权衡因素。同时,对于进程A唤醒进程B这个模型,还做了特殊的处理。本文分析以Centos kernel 3.10.0-975源码为蓝本。
当我们使用top命令查看系统的资源使用情况时会看到load average,如下图所示,它表示系统在1,5,15分钟的平均工作负载。 那么什么是负载(load)呢?它和CPU的利用率又有什么关系呢
最近用全志的方案做CPU频率切频稳定性测试,就是不停地切换频率,测试CPU跑在每个频率上时候的稳定性,测试的设计思路如下:(以R331为例)
超线程技术(Hyper-Threading): 就是利用特殊的硬件指令,把两个逻辑内核(CPU core)模拟成两个物理芯片,(一个核模拟出两个核?)
CPU密集型,也叫计算密集型,一般是指服务器的硬盘、内存硬件性能相对CPU好很多,或者使用率低很多。系统运行CPU读写I/O(硬盘/内存)时可以在很短的时间内完成,几乎没有阻塞(等待I/O的实时间)时间,而CPU一直有大量运算要处理,因此CPU负载长期过高。
std::shared_ptr 是共享对象所有权的智能指针,当最后一个占有对象的shared_ptr被销毁或再赋值时,对象会被自动销毁并释放内存,见cppreference.com。而shared_ptr所指向的SyncedMemory即是本文要讲述的重点。
我们在进行机器学习的时候,肯定需要使用一个比较好的 GPU 显卡,其次就是一个性能强劲的 CPU 了。主频高的 CPU 在跑程序的时候,真的有时候比使用 GPU 都跑的快,所以如何查看自己机器的 CPU 就是必不可少的步骤了。我们常常选购笔记本或者服务器的时候,总是会看到 X 核 XG 这样的表示,今天我们就一起来了解下其中的一些常见术语吧!
6 内存屏障(Memory Barriers) 6.1 What Memory Barriers? 内存屏障,也称内存栅栏,内存栅障,屏障指令等,是一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之前的所有读写操作都执行后才可以开始执行此点之后的操作。大多数现代计算机为了提高性能而采取乱序执行,这使得内存屏障成为必须。语义上,内存屏障之前的所有写操作都要写入内存;内存屏障之后的读操作都可以获得同步屏障之前的写操作的结果。因此,对于敏感的程序块,写操作之后、读操作之前可以
最近看了一个虚机的CPU使用情况,使用mpstat -P ALL命令查看系统的CPU情况(该系统只有一个CPU core),发现该CPU的%usr长期维持在70%左右,且%sys也长期维持在20%左右:
Linux 内核中 , 通过 bitmap 管理 CPU 处理器 , 并且在 Linux 源码中的 linux-5.6.18\include\linux\cpumask.h 头文件源码中 , 定义了 CPU 的四种状态 :
在平时的运维工作中,当一台服务器的性能出现问题时,通常会去看当前的CPU使用情况,尤其是看下CPU的负载情况(load average)。对一般的系统来说,根据cpu数量去判断。比如有2颗cup的机器。如果平均负载始终在1.2以下,那么基本不会出现cpu不够用的情况。也就是Load平均要小于Cpu的数量。 对于cpu负载的理解,首先需要搞清楚下面几个问题: 1)系统load高不一定是性能有问题。 因为Load高也许是因为在进行cpu密集型的计算 2)系统Load高不一定是CPU能力问题或数量不够。
$ free -h total used free shared buff/cache available Mem: 125G 6.1G 355M 230M 119G 118G Swap: 15G 0B 15G
对于具有多颗CPU的服务器,Nginx通过设置worker_cpu_affinity参数,即可轻松实现控制进程平均分配到多颗CPU上。
基本概念 物理CPU:物理CPU就是插在主机上的真实的CPU硬件,在Linux下可以数不同的physical id 来确认主机的物理CPU个数。 核心数:物理CPU下一层概念就是核心数,我们常常会听说多核处理器,其中的核指的就是核心数。在Linux下可以通过cores来确认主机的物理CPU的核心数。 逻辑CPU:核心数下一层的概念是逻辑CPU,逻辑CPU跟超线程技术有联系,假如物理CPU不支持超线程的,那么逻辑CPU的数量等于核心数的数量;如果物理CPU支持超线程,那么逻辑CPU的数目是核心数数目的两倍。在Linux下可以通过 processors 的数目来确认逻辑CPU的数量。 超线程:超线程是英特尔开发出来的一项技术,使得单个处理器可以象两个逻辑处理器那样运行,这样单个处理器以并行执行线程。这里的单个处理器也可以理解为CPU的一个核心;这样便可以理解为什么开启了超线程技术后,逻辑CPU的数目是核心数的两倍了。 在Linxu下查看物理cpu、核心数、逻辑CPU和是否支持超线程 关于CPU的一些信息可在 /proc/cpuinfo 这个文件中查看,这个文件显示的内容类似于下图所示
在多核结构中,每个核有各自的L1缓存,相同类型的核被划分在同一个cluster中,而不同cluster之间又有共用的L2缓存。讲负载均衡的时候我们讲过一个进程在核之间来回切换的时候,各个核之间的缓存命中率会降低,所以,将进程与 CPU 进行绑定可以提高 CPU 缓存的命中率,从而提高性能。这种绑定关系就叫做:进程的 CPU 亲和性。
了解更多欢迎访问知乎 :https://www.zhihu.com/people/mu-mu-67-87-35
我们知道计算机三大核心组件:CPU、内存和硬盘,其中CPU的处理速度是最快的,CPU的处理速度远远大于将数据从硬盘加载进来的速度,所以就导致CPU大部分都是空闲处于等待从硬盘加载数据这个流程上。然后就引入了内存,CPU从内存读取速度得到很大提升,然而依然存在很大瓶颈,为了提升CPU处理效率,生产厂商就在CPU上引入缓存Cache。
线程的使用目的是提高运行速度,提高运行的速度是要充分提用CPU和I/O 的利用率。
一般我们的开发同学们都知道自己机器的CPU是几核、内存是多大。但是对于CPU内部对程序性能影响较大的缓存却是一知半解。有些开发同学都是计算机的缓存有L1、L2、L3,但是再详细一点的问题,可能就很少有同学能答的完整了。如果下面这几个问题你能脱口而出,请跳过本节。例如:
比如一秒内有100个cpu时间片,这个cpu时间片就是cpu工作的最小单位。那么这100个cpu时间片在不同的区域和目的进行操作使用,就代表这个区域所占用的cpu时间比。也就是这里得出的cpu时间百分比。
摩尔定律告诉我们:大约每18个月会将芯片的性能提高一倍。芯片的这种飞速发展直接导致了芯片的指令执行速度与内存读取速度之间的巨大鸿沟。
记得博主以前被问到 CPU 负载如何才算高的时候,出过一次糗,具体就不记录了。。。在网上找了一篇比较详细的 Linux 下的 CPU 负载算法教程,科普一下。不感兴趣,或看不懂的朋友无视即可,不必浪费时间哈。 ---- 昨天查看 Nagios 警报信息,发现其中一台服务器 CPU 负载过重,机器为 CentOS 系统。信息如下: 2011-2-15 (星期二) 17:50 WARNING - load average: 9.73, 10.67, 10.49 还有前两个小时发出的警报信息: 2011-2
提到CPU利用率,就必须理解时间片。什么是CPU时间片?我们现在所使用的Windows、Linux、Mac OS都是“多任务操作系统”,就是说他们可以“同时”运行多个程序,比如一边打开Chrome浏览器浏览网页还能一边听音乐。
IP=`ifconfig eth0 | grep "inet addr" | cut -f 2 -d ":" | cut -f 1 -d " "`
来自Linux内核文档。之前看过这篇文章,一直好奇,问什么一条网络流会固定在一个CPU上进行处理,本文档可以解决这个疑问。为了更好地理解本文章中的功能,将这篇文章穿插入内。
我该为我的物理服务器分配多少虚拟CPU给虚机才合理,分配比1:1,2:1,听说还可以到8:1?
超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑内核(CPU core)模拟成两个物理芯片, 让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。 我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU.
Chromium是一个伟大的、庞大的开源工程,很多值得我们学习的地方。 前面写道: 《跟Google学写代码–Chromium/base–stl_util源码学习及应用》 《跟Google学写代码–Chromium/base–windows_version源码学习及应用》 今天分享cpu相关的操作。 先看看这个枚举: enum IntelMicroArchitecture { PENTIUM, SSE, SSE2, SSE3, SSSE3, SSE41
Exporter是Prometheus的指标数据收集组件。它负责从目标Jobs收集数据,并把收集到的数据转换为Prometheus支持的时序数据格式。和传统的指标数据收集组件不同的是,他只负责收集,并不向Server端发送数据,而是等待Prometheus Server 主动抓取,node-exporter 默认的抓取url地址:http://ip:9100/metrics。
lscpu 从伪文件系统(sysfs)、/proc/cpuinfo 和任何可用的特定体系架构库(如 Powerpc 上的 librtas)收集 CPU 架构信息。命令输出可读,也可用于分析。输出内容包括:CPU、线程、内核的数量,以及非统一存储器存取(NUMA)节点。此外还包括关于 CPU 高速缓存和高速缓存共享的信息,家族、模型、bogoMIPS、字节顺序和步进(stepping)。
相信很多 Java 开发,都使用了 Java 的各种并发同步机制,例如 volatile,synchronized 以及 Lock 等等。也有很多人读过 JSR 第十七章 Threads and Locks(地址:https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html),其中包括同步、Wait/Notify、Sleep & Yield 以及内存模型等等做了很多规范讲解。但是也相信大多数人和我一样,第一次读的时候,感觉就是在看热闹,看完了只是知道他是这么规定的,但是为啥要这么规定,不这么规定会怎么样,并没有很清晰的认识。同时,结合 Hotspot 的实现,以及针对 Hotspot 的源码的解读,我们甚至还会发现,由于 javac 的静态代码编译优化以及 C1、C2 的 JIT 编译优化,导致最后代码的表现与我们的从规范上理解出代码可能的表现是不太一致的。并且,这种不一致,导致我们在学习 Java 内存模型(JMM,Java Memory Model),理解 Java 内存模型设计的时候,如果想通过实际的代码去试,结果是与自己本来可能正确的理解被带偏了,导致误解。 我本人也是不断地尝试理解 Java 内存模型,重读 JLS 以及各路大神的分析。这个系列,会梳理我个人在阅读这些规范以及分析还有通过 jcstress 做的一些实验而得出的一些理解,希望对于大家对 Java 9 之后的 Java 内存模型以及 API 抽象的理解有所帮助。但是,还是强调一点,内存模型的设计,出发点是让大家可以不用关心底层而抽象出来的一些设计,涉及的东西很多,我的水平有限,可能理解的也不到位,我会尽量把每一个论点的论据以及参考都摆出来,请大家不要完全相信这里的所有观点,如果有任何异议欢迎带着具体的实例反驳并留言。
CPU的英文全称是(Central Processing Unit),中文意思翻译中央处理器,是计算机的主要设备之一,功能主要是解释计算机指令以及处理计算机软件中的数据。计算机的可编程性主要是指对中央处理器的编程。
TargetConditionals 是在user/include 一个关于运行目标情况的一个宏定义,能让你知道运行机型、cup类型等等。
代码都是由 CPU 跑起来的,我们代码写的好与坏就决定了 CPU 的执行效率,特别是在编写计算密集型的程序,更要注重 CPU 的执行效率,否则将会大大影响系统性能。
写了一个检测服务器cpu的脚本,每三分钟检测一次,当cpu总使用率达到30%时候将进行触发后续功能;
随着CPU架构的发展,工艺的升级,带来性能提升,能效的提升(同性能下)。但是由于极限性能的增加,也带来了peak功耗的增加(大部分情况下,能效比的提升无法抵消这部分),CPU功耗优化一直是广大SOC厂商比较头疼的问题。
在centos7的/sys/fs/cgroup下面可以看到与cpu相关的有cpu,cpuacct和cpuset 3个subsystem。cpu用于对cpu使用率的划分;cpuset用于设置cpu的亲和性等,主要用于numa架构的os;cpuacct记录了cpu的部分信息。对cpu资源的设置可以从2个维度考察:cpu使用百分比和cpu核数目。前者使用cpu subsystem进行配置,后者使用cpuset subsystem进程配置。首先看cpu subsystem的用法
默认情况下,节点上的 Pod 默认共享节点 CPU 池中所有的 CPU核数, 当节点上运行了很多 CPU 密集的 Pod 时,工作负载可能会切换调度到不同的 CPU 核, 这样就导致有些工作负载的性能明显地受到 CPU 缓存亲和性以及调度延迟的影响。 对此,kubelet 提供了可选的 CPU 管理策略,可以实现某些关键 Pod 的静态绑核,避免 CPU 抢占和切换对业务带来的性能损耗。详情参考:控制节点上的 CPU 管理策略 。
领取专属 10元无门槛券
手把手带您无忧上云