首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Bert变压器在机器转换时出现“尺寸错误”

,这是由于输入数据的维度与模型期望的维度不匹配所导致的错误。Bert变压器是一种基于Transformer架构的预训练模型,用于自然语言处理任务,如文本分类、命名实体识别等。

在使用Bert模型进行机器转换时,需要将输入数据进行预处理,以符合模型的输入要求。Bert模型的输入通常包括两部分:输入文本和输入掩码。输入文本是待转换的文本序列,而输入掩码用于指示哪些部分是真实的文本,哪些部分是填充的。

当出现“尺寸错误”时,可能是由于以下原因导致的:

  1. 输入文本的长度超过了模型的最大输入长度限制。Bert模型对输入文本的长度有一定的限制,超过限制会导致尺寸错误。解决方法可以是截断或缩短输入文本,使其符合模型要求。
  2. 输入文本的维度与模型期望的维度不匹配。Bert模型对输入文本的维度有一定的要求,例如需要进行词嵌入等处理。如果输入文本的维度与模型期望的维度不一致,会导致尺寸错误。解决方法可以是调整输入文本的维度,使其与模型要求一致。

针对这个问题,腾讯云提供了一系列与自然语言处理相关的产品和服务,例如腾讯云自然语言处理(NLP)平台、腾讯云机器学习平台等。这些产品和服务可以帮助开发者更方便地使用Bert模型进行机器转换,并提供了相应的API和SDK,以简化开发流程。

腾讯云自然语言处理(NLP)平台是一套提供自然语言处理能力的云服务,包括文本分类、情感分析、命名实体识别等功能。开发者可以通过调用相应的API,将输入文本传入平台进行处理,从而解决Bert变压器在机器转换时出现的尺寸错误问题。具体产品介绍和使用方法可以参考腾讯云自然语言处理(NLP)平台的官方文档:腾讯云自然语言处理(NLP)平台

需要注意的是,以上提到的腾讯云产品和服务仅作为示例,其他云计算品牌商也提供类似的产品和服务,开发者可以根据实际需求选择适合自己的解决方案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AutoFormer: Searching Transformers for Visual Recognition

    最近,基于Transformers的模型在图像分类和检测等视觉任务中显示出了巨大的潜力。 然而,变压器网络的设计是具有挑战性的。 已经观察到,深度、嵌入尺寸和头部的数量在很大程度上影响视觉变形器的性能。 以前的模型基于手工手工配置这些维度。 在这项工作中,我们提出了一个新的一次性架构搜索框架,即AutoFormer,专门用于视觉Transformers搜索。 在超网训练期间,自动前缠绕不同块的重量在同一层。 受益于该战略,训练有素的超级网络允许数千个子网得到非常好的训练。 具体来说,这些继承自超级网络权重的子网的性能与那些从头开始重新训练的子网相当。 此外,搜索模型,我们参考的AutoFormers,超过了最近的先进水平,如ViT和DeiT。 特别是AutoFormer-tiny/small/base在ImageNet上实现了74.7%/81.7%/82.4%的top-1精度,分别为5.7M/22.9M/53.7M参数。 最后,我们通过提供下游基准和蒸馏实验的性能来验证自动成形机的可移植性。

    03

    计算机视觉最新进展概览(2021年6月6日到2021年6月12日)

    水下目标检测技术已引起了人们的广泛关注。 然而,由于几个挑战,这仍然是一个未解决的问题。 我们通过应对以下挑战,使之更加现实。 首先,目前可用的数据集基本上缺乏测试集注释,导致研究者必须在自分测试集(来自训练集)上与其他sota进行比较。 训练其他方法会增加工作量,不同的研究人员划分不同的数据集,导致没有统一的基准来比较不同算法的性能。 其次,这些数据集也存在其他缺点,如相似图像过多或标签不完整。 针对这些挑战,我们在对所有相关数据集进行收集和重新标注的基础上,引入了一个数据集——水下目标检测(detection Underwater Objects, DUO)和相应的基准。 DUO包含了多种多样的水下图像,并有更合理的注释。 相应的基准为学术研究和工业应用提供了SOTAs(在mmddetection框架下)的效率和准确性指标,其中JETSON AGX XAVIER用于评估检测器速度,以模拟机器人嵌入式环境。

    01

    延迟基于变压器的编码器中的交互层,实现高效的开放域问题解答

    大量文件(如维基百科)上的开放领域问题解答(ODQA)是计算机科学中的一个关键挑战。尽管基于变压器的语言模型(如 Bert)在 SQuAD 上展示了在文本小段落中提取答案的能力,但它们在面对更大的搜索空间时,其复杂性很高。解决此问题的最常见方式是添加初步的信息检索步骤,以筛选语料库,并仅保留相关段落。在这篇论文中,我们提出了一个更直接和互补的解决方案,它包括应用基于变压器的模型架构的通用更改,以延缓输入子部分之间的注意,并允许更有效地管理计算。由此产生的变型与采掘任务上的原始型号具有竞争力,并且允许在 ODQA 设置上显著加速,甚至在许多情况下性能提高。

    00

    旋转编码器原理「建议收藏」

    旋转变压器(resolver)是一种电磁式传感器,又称同步分解器。它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。其中定子绕组作为变压器的原边,接受励磁电压,励磁频率通常用400、3000及5000HZ等。转子绕组作为变压器的副边,通过电磁耦合得到感应电压。旋转变压器的工作原理和普通变压器基本相似,区别在于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比是常数,而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改变,因而其输出电压的大小随转子角位移而发生变化,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。旋转变压器在同步随动系统及数字随动系统中可用于传递转角或电信号;在解算装置中可作为函数的解算之用,故也称为解算器。

    02

    计算机视觉最新进展概览(2021年6月27日到2021年7月3日)

    1、SIMPL: Generating Synthetic Overhead Imagery to Address Zero-shot and Few-Shot Detection Problems 近年来,深度神经网络(DNNs)在空中(如卫星)图像的目标检测方面取得了巨大的成功。 然而,一个持续的挑战是训练数据的获取,因为获取卫星图像和在其中标注物体的成本很高。 在这项工作中,我们提出了一个简单的方法-称为合成目标植入(SIMPL) -容易和快速地生成大量合成开销训练数据的自定义目标对象。 我们演示了在没有真实图像可用的零射击场景下使用SIMPL合成图像训练dnn的有效性; 以及少量的学习场景,在那里有限的现实世界的图像可用。 我们还通过实验研究了SIMPL对一些关键设计参数的有效性的敏感性,为用户设计定制目标的合成图像提供了见解。 我们发布了SIMPL方法的软件实现,这样其他人就可以在其基础上构建,或者将其用于自己的定制问题。 2、Monocular 3D Object Detection: An Extrinsic Parameter Free Approach 单目三维目标检测是自动驾驶中的一项重要任务。 在地面上存在自我-汽车姿势改变的情况下,这很容易处理。 这是常见的,因为轻微波动的道路平滑和斜坡。 由于在工业应用中缺乏洞察力,现有的基于开放数据集的方法忽略了摄像机姿态信息,不可避免地会导致探测器受摄像机外部参数的影响。 在大多数工业产品的自动驾驶案例中,物体的扰动是非常普遍的。 为此,我们提出了一种新的方法来捕获摄像机姿态,以制定免于外部扰动的探测器。 具体地说,该框架通过检测消失点和视界变化来预测摄像机外部参数。 设计了一种变换器来校正潜势空间的微扰特征。 通过这样做,我们的3D探测器独立于外部参数变化工作,并在现实情况下产生准确的结果,例如,坑洼和不平坦的道路,而几乎所有现有的单目探测器无法处理。 实验表明,在KITTI 3D和nuScenes数据集上,我们的方法与其他先进技术相比具有最佳性能。 3、Focal Self-attention for Local-Global Interactions in Vision Transformers 最近,视觉Transformer及其变体在各种计算机视觉任务中显示出了巨大的前景。 通过自我关注捕捉短期和长期视觉依赖的能力可以说是成功的主要来源。 但它也带来了挑战,由于二次计算开销,特别是高分辨率视觉任务(例如,目标检测)。 在本文中,我们提出了焦点自关注,这是一种结合了细粒度局部交互和粗粒度全局交互的新机制。 使用这种新机制,每个令牌都以细粒度处理最近的令牌,但以粗粒度处理远的令牌,因此可以有效地捕获短期和长期的可视依赖关系。 随着焦点自注意,我们提出了一种新的视觉变压器模型,称为Focal Transformer,在一系列公共图像分类和目标检测基准上实现了优于目前最先进的视觉变压器的性能。 特别是我们的Focal Transformer模型,中等尺寸为51.1M,较大尺寸为89.8M,在2224x224分辨率下的ImageNet分类精度分别达到83.5和83.8 Top-1。 使用Focal transformer作为骨干,我们获得了与目前最先进的Swin transformer相比的一致和实质的改进,这6种不同的目标检测方法采用标准的1倍和3倍计划训练。 我们最大的Focal Transformer在COCO mini-val/test-dev上产生58.7/58.9 box mAPs和50.9/51.3 mask mAPs,在ADE20K上产生55.4 mIoU用于语义分割,在三个最具挑战性的计算机视觉任务上创建新的SOTA。 4、AutoFormer: Searching Transformers for Visual Recognition 最近,基于Transformer的模型在图像分类和检测等视觉任务中显示出了巨大的潜力。 然而,Transformer网络的设计是具有挑战性的。 已经观察到,深度、嵌入尺寸和头部的数量在很大程度上影响视觉变形器的性能。 以前的模型基于手工手工配置这些维度。 在这项工作中,我们提出了一个新的一次性架构搜索框架,即AutoFormer,专门用于视觉转换器搜索。 在超网训练期间,自动前缠绕不同块的重量在同一层。 受益于该战略,训练有素的超级网络允许数千个子网得到非常好的训练。 具体来说,这些继承自超级网络权重的子网的性能与那些从头开始重新训练的子网相当。 此外,搜索模型,我们参考的AutoFormers,超过了最近的先进水平,如ViT和DeiT。 特别是AutoFormer-tiny/small/base在ImageNet上实现了74.7%/81.7%/82.4%的top-1精度,分别为5.7M/22

    02

    AAAI 2020 提前看 | 三篇论文解读问答系统最新研究进展

    在本篇提前看中,我们重点聚焦 AAAI 2020 中与问答系统(Q&A)相关的文章。问答系统是自然语言处理领域的一个重要研究方向,近年来各大国际会议、期刊都发表了大量与问答系统相关的研究成果,实际工业界中也有不少落地的应用场景,核心算法涉及机器学习、深度学习等知识。问答系统(Q&A)的主要研究点包括模型构建、对问题/答案编码、引入语义特征、引入强化学习、内容选择、问题类型建模、引入上下文信息以及实际应用场景问题解决等。在本次 AAAI2020 中,直接以「Question/Answer」作为题目的论文就有 40 余篇。本文选取了其中三篇进行详细讨论,内容涉及语义特征匹配、模型构建和医学场景应用等。

    02

    技术猿 | 焊接机器人应用的常见问题与解决措施

    随着制造业劳动成本的上涨,机器人产品价格的不断下降,人们更加追求更舒适的工作条件,机器人的应用每年递增。 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备,特别适合于多品种变批量的柔性生产。它对稳定、提高产品质量,提高生产效率改善劳动条件和产品的快速更新换代起着十分重要的作用。 自从20世纪60年代初,人类创造了第一台工业机器人以后,工业机器人就显示出它极大的生命力,在短短40多年的时间中,工

    05

    技术猿 | 焊接机器人的应用分析及编程技巧

    随着制造业劳动成本的上涨,机器人产品价格的不断下降,人们更加追求更舒适的工作条件,机器人的应用每年递增。 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备,特别适合于多品种变批量的柔性生产。它对稳定、提高产品质量,提高生产效率改善劳动条件和产品的快速更新换代起着十分重要的作用。 自从20世纪60年代初,人类创造了第一台工业机器人以后,工业机器人就显示出它极大的生命力,在短短40多年的时间中,工业

    06
    领券