HTML5因其跨平台性的特质已逐渐成为网络游戏开发的热门新技术。过去,flash多媒体应用可以用来构建线上游戏,也是小游戏的主流形态,但是随着HTML5的到来,改变了线上游戏的构建方法,用HTML5制作游戏相比flash更加灵活方便。
Cataclysm:Dark Days Ahead 是一个回合制的生存游戏,设定在一个后启示录世界中。尽管有些人将其描述为 “僵尸游戏”,但 Cataclysm 远不止于此。在这个残酷、持久、程序生成的世界中努力生存下去吧!搜寻死亡文明的遗物,找到食物、装备或者幸运地发现一辆油箱满满的车来逃离危险。与各种强大怪兽作斗争,从僵尸到巨型昆虫再到杀手机器人以及更奇异和致命的东西,并对抗其他想要你拥有之物的人...
GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企业榜”榜单。目前,我们正在四处拜访人工智能、机器人领域的相关公司,从而筛选最终入选榜单的公司名单。如果你的公司也想加入我们的榜单之中,请联系:2020@leiphone.com 如果不知道更高级的AI 智版本,你可能会认为Siri、Cortana和Google Now这类虚拟个人助理(Virtual Personal Assistants简称VPAs
这是一名推特网友在谷歌副总裁David Kleidermacher宣布退出Black Hat大会后留下的评论。7月5日,负责Android和Play商城安全的谷歌副总裁David Kleidermacher宣布退出原定于今年8月举行的Black Hat USA 2020安全峰会。
相信每个人都有后悔的时候,但是人生并无后悔药,有些错误一旦发生就无法再挽回,有些事一旦错过就不会再重来,有些话一旦说出口也就不可能再收回,这就是人生。为了不让自己后悔,我们总是需要三思而后行。这里我们要学习一种可以在软件中实现后悔机制的设计模式—备忘录模式,它是软件中的“后悔药”。
大家好,又见面了,我是你们的朋友全栈君。 简单说说 自己对 android LayoutParams的理解吧。 public static class ViewGroup.LayoutParams extends Object java.lang.Object ↳ android.view.ViewGroup.LayoutParams //继承关系 以下说明摘自官方文档E文好的可以看看 Class Overview LayoutParams are used by views to tell their parents how they want to be laid out. See ViewGroup Layout Attributes for a list of all child view attributes that this class supports. The base LayoutParams class just describes how big the view wants to be for both width and height. For each dimension, it can specify one of: FILL_PARENT (renamed MATCH_PARENT in API Level 8 and higher), which means that the view wants to be as big as its parent (minus padding) WRAP_CONTENT, which means that the view wants to be just big enough to enclose its content (plus padding) an exact number There are subclasses of LayoutParams for different subclasses of ViewGroup. For example, AbsoluteLayout has its own subclass of LayoutParams which adds an X and Y value. E文不好看不懂 但是觉得写得啰嗦了 其实这个LayoutParams类是用于child view(子视图) 向 parent view(父视图)传达自己的意愿的一个东西(孩子想变成什么样向其父亲说明)其实子视图父视图可以简单理解成 一个LinearLayout 和 这个LinearLayout里边一个 TextView 的关系 TextView 就算LinearLayout的子视图 child view 。需要注意的是LayoutParams只是ViewGroup的一个内部类 这里边这个也就是ViewGroup里边这个LayoutParams类是 base class 基类 实际上每个不同的ViewGroup都有自己的LayoutParams子类 比如LinearLayout 也有自己的 LayoutParams 大家打开源码看几眼就知道了 myeclipse 怎么查看源码 请看 http://byandby.iteye.com/blog/814277 下边来个例子
阅读本文前,请您先点击右上角的蓝色字体“优课屋”,再点击“关注”,这样您就可以继续订阅文章了!
LayoutParams继承于Android.View.ViewGroup.LayoutParams. LayoutParams相当于一个Layout的信息包,它封装了Layout的位置、高、宽等信息。假设在屏幕上一块区域是由一个Layout占领的,如果将一个View添加到一个Layout中,最好告诉Layout用户期望的布局方式,也就是将一个认可的layoutParams传递进去。 可以这样去形容LayoutParams,在象棋的棋盘上,每个棋子都占据一个位置,也就是每个棋子都有一个位置的信息,如这个棋子在4行4列,这里的“4行4列”就是棋子的LayoutParams。
2018年,整个移动互联网进入了下半场。为什么说已经进入了下半场,谈未来,先讲历史,我们来重头开始捋一捋吧。
金磊 衡宇 发自 凹非寺 量子位 | 公众号 QbitAI 郭晶晶家的象棋家教——没错,就是商汤AI象棋机器人“元萝卜”(SenseRobot),近日正式现货发售。 从近2个月前开始预售的那刻起,各种讨论就萦绕在它周围: AI象棋机器人水平怎么样?作为实体机器人,和网络下棋AI有什么差别?具体实用性,会让它买后不久就搁置吃灰,还是真的能与它长期对弈,畅快厮杀? 以及,真的会有人买它吗? 得到答案是肯定的。数据体现,预售阶段元萝卜就售罄;发货首日,官方旗舰店已经有头一批吃“萝卜”的人,写下或长或短的用户体验
【新智元发自中国乌镇】乌镇人工智能峰会进入第二天,哈萨比斯、David Silver和Jeff Dean等谷歌高管纷纷发表演讲。他们对AlphaGo 2.0的新技术进行了详细解读。几位“谷歌人”纷纷提到一个关键词——TPU。Jeff Dean 甚至直接放出了与GPU的性能对比图。从昨天的赛后采访到今天的主旨演讲,哈萨比斯等人一直在强调TPU对新版本的AlphaGo的巨大提升。看来,TPU将会成为接下来一段时间内谷歌的战略重点,GPU要小心了。本文带来哈萨比斯、David Silver现场演讲报道(附PPT)
本文是雷锋网2015年9月份发出的文章,由知社学术圈王鹏编译,原标题《深度学习机器自学国际象棋72小时,媲美国际大师》,文章来源:MIT Technology Review。 谷歌旗下Deep MInd创始人宣布了谷歌在人工智能领域取得重要进展:开发出一款能够在围棋中击败职业选手的程序——AlphaGo,《Nature》杂志也以封面论文的形式, 介绍了AlphaGo击败欧洲围棋冠军樊麾,并将在 3 月和世界冠军李世乭对战。在此之前,有专家提到人工智能机器——“长颈鹿”,它可以通过自学从而像人类那样通过评
不仅会下围棋,还自学成才横扫国际象棋和日本将棋的DeepMind AlphaZero,登上了最新一期《科学》杂志封面。
2016年1月27日,《自然》刊文报道,谷歌公司开发人工智能程序alpha go(阿尔法围棋)以5:0的战绩完胜欧洲冠军,围棋职业二段樊麾。这是围棋人工智能首次战胜人类职业棋手。这在围棋界掀起了一个不大不小的波澜。之所以不大,是因为樊麾并不能代表人类最高水平。另外当时人们对ALPHA GO知之甚少,仅从棋谱上看,仍有不小的瑕疵。 2016年3月9日至3月15日,ALPHA GO在韩国首尔以4:1的战绩战胜人类顶尖棋手,韩国围棋职业棋手李世石九段。如果说战胜樊麾只是ALPHA GO的小试牛刀,人们对ALPHA
之前我写过篇博文,用象棋的思维趣说IT人的职业发展和钱途,发现象棋中的一些思维能应用到我们程序员平时的职业发展中。
关注风云之声 提升思维层次 解读科学,洞察本质 戳穿忽悠,粉碎谣言 导读 AlphaZero下国际象棋的时候,最革命性的一点是,它没有棋子的概念。无论是人类高手还是过去的顶级AI,再怎么也是以棋子实力评估为基础的,被吃了大子会心疼,在这个基础上再去进行“重视中央”之类的局面评估理论。而AlphaZero却完全对棋子没有概念,只要它认为未来整体局势好,弃子根本不叫事。这次Deepmind新论文应该给出结论了,“MCTS+神经网络”就是先进生产力的代表。 2017年12月6号,Deepmind扔出了一篇论文
人工智能(AI)的子集已经成倍增长,并完成了只有人类才能完成的各种任务。像机器学习这样的技术可以执行管理任务、人脸识别、下棋,甚至翻译语言。
今天,DeepMind的通用棋类算法,也是迄今最强的棋类AI——AlphaZero,经过同行评议,被顶级期刊 Science 以封面论文的形式,正式引入学界和公众的视野。
萧箫 发自 凹非寺 量子位 | 公众号 QbitAI ChatGPT对战国际象棋AI,不到15秒就让人大受震撼。 开局ChatGPT执黑,国际象棋AI执白,双方有来有往,ChatGPT甚至主动出击,逼退对方的象(主教): 看起来会是一场激烈较量,直到ChatGPT突然嘎嘣一下,吃掉了自己的象! △奇怪的王车易位操作 事情到这里开始不对劲起来。 无论是棋盘上凭空出现的第9个黑兵(国际象棋黑白各只有8个兵): 还是突然把斜线上的象吃掉的马: △马本来只能走“日”字 简直不把规则放在眼里有木有! 这般
在2017年,DeepMind推出了AlphaZero,自己学会了掌握国际象棋,日本将棋和Go,击败了世界冠军。DeepMind很高兴看到国际象棋界成员的回应,他们在和AlphaZero对战中看到了一种突破性的,高度动态和非传统的游戏风格,与之前的任何国际象棋游戏程序都不同。
王新民 编译 量子位 报道 | 公众号 QbitAI 在编程之前,我们先了解一些基本的概念,来帮助我们创建一个简单的象棋AI机器人:移动生成、棋局评估、最大最小搜索和α-β剪枝搜索过程这四个概念。 在每个步骤中,我们将会在已有的程序上加入上述经典的象棋编程优化技术,来进行改进我们的象棋机器人。同时我会向大家演示各种优化参数是怎么影响算法的下棋风格和计算速度的。 作者Lauri Hartikka提到:“我已经无法战胜我创造出来的象棋机器人。我觉得导致这个结果的原因不是因为我下棋技术太烂,就是算法已经足够优秀。
谷歌旗下人工智能公司DeepMind将围棋AI转战国际象棋和日本将棋领域——无须人类智慧加持,已胜券在握。 AlphaZero是由谷歌旗下DeepMind研发的通用棋类AI,以不到四小时的自学击败了世界最强的国际象棋程序。 重新改进的人工智能程序AlphaZero曾多次击败世界顶级围棋选手,并扩大到学习其他棋类项目。它从零开始学习国际象棋,仅用4小时,就在100盘比赛中击败了世界顶级国际象棋程序 Stockfish 8。 据在康奈尔大学图书馆的arXiv上发表的一篇未经同行评审的研究论文称,在这100场
如果你已经在从事其中一种设计体验工作,你可能会想:“信息架构不是关于创建站点地图、线框图和网站导航菜单的吗?”确实如此——这些是信息架构设计的重要元素。但是信息架构不只是如此。
2016年,阿尔法狗与李世石的人机大战,引爆人们对AI的关注。无数棋艺爱好者,在目睹了阿尔法狗战胜李世石之后,无不想与之对弈,亲自感受来自人工智能的神秘力量。
1.题目分析 首先需要一个实体类来代表一枚象棋的基本信息,包含象棋的名字/当前坐标 其次需要一个备忘录类来保存象棋的信息,这个类应当含有象棋类的要保存的字段,并且该类对外封闭 由于备忘录类是对外封闭的,所以应当由一个备忘录管理者类,来负责创建和恢复象棋的备忘录 客户端不与备忘录类耦合,而是借用备忘录管理类来管理备忘录 2.UML图
此前不久,DeepMind 还推出了 AlphaFold,成功地根据基因序列预测出蛋白质的 3D 形状,将人工智能技术应用在了科学研究领域。
金磊 发自 凹非寺 量子位 | 公众号 QbitAI “跳水皇后”郭晶晶,教孩子们下象棋也是不一般。 你以为是花重金聘请象棋大师,手把手、一对一地进行辅导? No,No,No~ 就在刚刚,郭晶晶亲自爆料了令人意想不到的“独家秘方”——用AI机器人。 从曝光的画面来看,这个AI机器人大致由三个部分组成: 小小的脑袋,长长的手,棋盘之上稳步走。 而且郭晶晶还在现场介绍说,象棋运动其实很早就是家庭生活中的一部分,但这个AI机器人却带来了不一样的体验: 它是一个全能棋手,可以和家里任何一个人下棋。 它和我们家孩子
选自 Medium 机器之心编译 参与:路雪、 刘晓坤 近日,Jose Camacho Collados 在 Medium 上发表了一篇题为《Is AlphaZero really a scienti
之前自己编写过一点关于棋类游戏的代码,所以对于这类游戏的大致构成也算是有一些肤浅的认识,前一阵子突然想到应该将这些个零散知识好好总结一番,以算作为自己学习的一点交代。可恨这不总结还好,一总结才发现自己以前自认为通晓的知识原来还是一知半解,更是发现了一堆自己先前遗漏的知识,唉,真可谓学海无涯啊......不过本着学习“八成”原则(这是我前阵子看过的一本书中的观点,感觉还是颇为心有戚戚的,意思大抵是学习过程中不要太过求全求通,慢慢学下去自会变全变通,书名曰《超级学习法》,是本老书了,作者是一名日本的教授,具体姓氏已经不记得了,有兴趣的朋友可以Google看看),自己还是就着多有纰漏的知识储备总结了起来,并且还煞有其事的编写了一些代码,本想借着这篇博文写一写自己总结来的看法,但后来想想与其自己肤浅的在这搬运知识,还不如将自己在学习过程中参考的一些文献介绍给大家,毕竟这原版终归要胜过盗版啊 :)
距离IBM的深蓝超级计算机击败国际象棋世界冠军加里·卡斯帕罗夫(Gary Kasparov)已经快过去20年了。此后,计算机性能不断提升,但象棋引擎工作仍主要依靠“暴力破解”,通过穷举法,即遍历一切可能的移动方式,走出最好的一步棋。相比计算机,人类所拥有的技巧主要是评估国际象棋的盘面局势,缩小最优棋路的搜索范围。 2015年9月,来自伦敦帝国学院的Matthew Lai开发出一款名为“Giraffe”的人工智能机器,它能通过自学来判断象棋的摆放位置和下步棋该怎么走,它完全颠覆了传统的国际象棋引擎,下棋方法更
选自arXiv 作者:David Silver等 机器之心编译 在 DeepMind 发表 Nature 论文介绍 AlphaGo Zero 之后,这家公司一直在寻求将这种强大算法泛化到其他任务中的可能性。昨天,AlphaGo 研究团队提出了 AlphaZero:一种可以从零开始,通过自我对弈强化学习在多种任务上达到超越人类水平的新算法。据称,新的算法经过不到 24 小时的训练后,可以在国际象棋和日本将棋上击败目前业内顶尖的计算机程序(这些程序早已超越人类世界冠军水平),也可以轻松击败训练 3 天时间的 A
作者:闻菲,刘小芹,常佩琦 【新智元导读】或许“智能爆炸”不会发生,但永远不要低估人工智能的发展。推出最强围棋AI AlphaGo Zero不到50天,DeepMind又一次超越了他们自己,也刷新了世人对人工智能的认知。12月5日,包括David Silver、Demis Hassabis等人在内的DeepMind团队发表论文,提出通用棋类AI AlphaZero,从零开始训练,除了基本规则没有任何其他知识,4小时击败最强国际象棋AI、2小时击败最强将棋AI,8小时击败李世石版AlphaGo,连最强围棋AI
Alex 发自 凹非寺 量子位 | 公众号 QbitAI 这是一只看起来人畜无害的小猫咪,瞧它大大的眼睛和无辜的眼神。 但此喵最近在国际象棋圈引起了轰动。 国际大师(International Master)Levy Rozman还半开玩笑半认真地说: 国际象棋世界必须联合起来反对米坦斯(Mittens,这只猫的名字)。 △Levy Rozman在小蓝鸟上ID名为GothamChess 事情是这样的,今年1月1日,在线国际象棋网站Chess.com推出了五种国际象棋机器人,小猫米坦斯就是其中之一。 想撸
距离IBM深蓝(Deep Blue)超级计算机在国际标准锦标赛规则下首次击败国际象棋世界冠军加里·卡斯帕罗夫(Gary Kasparov)已经有差不多20年了. 从那时起, 下象棋计算机的能力变得更加强大, 甚至运行在智能手机上的现代象棋引擎都几乎能让最强的人类毫无招架之力.
本文介绍了 AlphaZero 是如何利用深度强化学习解决围棋问题的。首先,AlphaZero 在无任何人类指导的情况下,通过自我对弈的方式学会下围棋。然后,它利用蒙特卡洛树搜索和深度神经网络来评估局面和选择策略。最后,通过与人类世界冠军和之前的围棋 AI 进行比较,AlphaZero 证明了其强大的围棋下棋能力。
AI 科技评论报道:今天 DeepMind 悄悄放出了一篇新论文,介绍了一个「AlphaZero」。一开始我们差点以为 DeepMind 也学会炒冷饭了,毕竟「从零开始学习」的 AlphaGo Zero 论文 10 月就发出来、大家已经讨论了许多遍了。 可定睛一看,这次的 AlphaZero 不是以前那个只会下围棋的人工智能了,它是通用的,国际象棋、日本象棋也会下,所以去掉了名字里表示围棋的「Go」;不仅如此,围棋还下得比上次的 AlphaGo Zero 还要好——柯洁在得知 AlphaGo Zero 之后
于是在网上引起了轩然大波。不少人认为,尼曼正是将棋局信息给了“肛珠型”超级计算机,利用它强大的AI能力,分析棋局从而帮助他击败了世界冠军。
炮五进四、马二进三、车一进一、车九平八……你报一招,我报一招,下完整盘棋。(这些是象棋里的棋招,车马炮等是棋子,平进退表示棋子移动的方向, 数字代表定位和移动的格数。)
森七为各位宅在家里的朋友分享几款超炫经典的HTML5游戏,让我们在不仅获得快乐的同时又可以学到新鲜的HTML5知识,一起来看看吧。 1、HTML5版切水果游戏 HTML5游戏极品 这是一款
【导读】从AlphoGo Zero 到AlphaZero只是少了一个词“围棋”(Go), 但是背后却代表着Hassabis将和他的DeepMind继续朝着“创造解决世界上一切问题的通用人工智能”这一目标道路上迈出了巨大的一步。今天DeepMind在arXiv发表论文表示其开发的通用强化学习程序AlphaZero,使用蒙特卡洛树搜索(MCTS)和深度神经网络,和强大的算力,同时在国际象棋,日本将棋和围棋中战胜各自领域的最强代表。而且这一切都是通过自我对弈完成的,在训练中除了游戏规则,不提供任何额外的领域知识。
今年,Deepmind的“AlphaGo”在围棋领域的胜利让不少人了解到人工智能的强大。当时有人还认为没有人类棋手的经验,人工智能很难快速达到如今的成绩,但后来推出的AlphaGo Zero却是从0开始,自己学习围棋,又取得超越AlphaGo的成绩。如今Deepmind再次将这种强大的算法泛化,提出了AlphaZero:一种可以从零开始,在多种不同的任务中通过自我对弈,达到超越人类水平的新算法。这种算法可以通过24小时的对弈训练后,就可以在日本将棋和国际象棋领域击败目前业内顶尖的计算机程序(这些程序早就战胜
20世纪90年代后期,IBM深蓝(Deep Blue)研究了一系列的国际象棋算法,期望于打败当时的世界冠军加里•卡斯帕罗夫(Garry Kasparov)。
夏乙 发自 凹非寺 量子位 出品 | 公众号 QbitAI AlphaGo退隐,留下身后一众你追我赶的围棋AI。 比如说前些天在野狐上连斩多名职业选手的新版绝艺“符合预期”,又比如说多年研究国际象棋和
---- 新智元报道 编辑:好困 桃子 【新智元导读】可能连你都想不到,奥运冠军郭晶晶家的私人象棋教练竟是一个机器人! 整个京城,只要有它在场,都引来大街小巷的人前来围观。 它能和你对弈,不论小白,还是象棋大师,都会棋逢对手。 什刹海、鼓楼,还有樱桃斜街胡同的大爷们纷纷来战,仅有一位封为「京城棋王」。 这机器人,有点意思! 于是,按捺不住好奇心的小编,也去找来了一台。 结果还没下几步就突然发现,怎么我的「帅」被吸走了? 情急之下,小编开启了耍赖模式,一把拔开了机械臂。 在几个回合的纠缠之后…
大数据文摘出品 作者:Caleb 10月初的一场国际象棋比赛,让19岁的Hans Niemann一跃成名。 相信大家都还记得,这场比赛也让Niemann直接打破了多年位居世界第一Magnus Carlsen在此之前创下了53场“西部不败”的记录。 是的,在所有人看来,这本来是一场没有任何悬念的比赛。 随后,大家都开始怀疑Niemann在比赛中作弊。 毕竟这也不是他第一次了。Niemann也亲口承认了曾在两次比赛中有过作弊行为,他解释说,这是因为他十分想与顶级棋手比赛,于是将作弊视为一条捷径,这是“他一
AlphaZero 表明神经网络可以学到人类可理解的表征。 作者 | 李梅 编辑 | 陈彩娴 国际象棋一直是 AI 的试验场。70 年前,艾伦·图灵猜想可以制造一台能够自我学习并不断从自身经验中获得改进的下棋机器。上世纪出现的“深蓝”第一次击败人类,但它依赖专家编码人类的国际象棋知识,而诞生于 2017 年的 AlphaZero 作为一种神经网络驱动的强化学习机器实现了图灵的猜想。 AlphaZero 的无需使用任何人工设计的启发式算法,也不需要观看人类下棋,而是完全通过自我对弈进行训练。 那么,它真的学习
阿尔法元(AlphaZero)诞生一周年之际,《科学(Science)》杂志今天以封面文发布了阿尔法元(AlphaZero)经过同行审议的完整论文,Deepmind创始人兼CEO哈萨比斯亲自执笔了这一论文。
DeepMind 和 Google Brain 研究人员以及前世界国际象棋冠军Vladimir Kramnik通过概念探索、行为分析和对其激活的检查,探索了人类知识是如何获得的,以及国际象棋概念如何在 AlphaZero 神经网络中表示。
领取专属 10元无门槛券
手把手带您无忧上云