首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【免费线上实践】动手训练模型系列:梯度消失

本模型实现对512*512图像的像素二分类问题;红色或蓝色的样本点(每个样本包含坐标(x,y)值)坐落在对应颜色的区域内则样本正确分类,反之分类错误。...(进入小程序 动手训模型) 模型训练小结: 梯度消失在深度神经网络训练中极为常见.神经网络训练中,每个网络层都会针对Loss值反向传播计算出该层的梯度,并根据梯度逐次迭代修正本层weight,最终每层...weight都得到相对正确的值即可完成训练.但是,当基于Loss值计算出的梯度值梯度值按照链式法则连续相乘,最终浅层网络得到的梯度值会出现接近于0的情况.这种情况一旦出现,则浅层网络的...Weight将停止修改,即发生梯度消失.本项目提供三个不同深度的ANN人工神经网络.针对相同样本集,分别训练,观察不同深度模型中梯度消失现象的发生。...如果模型的深度相对于样本特征的复杂度过深,则浅层的梯度值始终为0难以迭代,易出现梯度消失问题,导致模型无法正确完成任务。

61140

「糟糕」的策略梯度

策略梯度 用简洁的公式表述了这个问题之后,策略梯度就可以用下面这样的技巧推导得到: ? 这个式子表明了 J 相对于 ϑ 的梯度是下面这个式子的预期值 ?...概率策略确实是一种建模的方法,但它永远都不会比确定性策略更好。 非常通用的强化算法 所以上面这样的策略梯度算法实际上是一个找到如下形式的式子的随机梯度的通用方法 ?...我们从来都不计算 R 自己的梯度。 那么这个算法有任何好处么?答案取决于你想要什么。如果你想要的是一个能和梯度相提并论的算法,那就一点也不好,是一个糟透了的算法。...并且,J 作为 ϑ 的函数,明显是凸的,以及需要知道的最重要的事是这样的梯度的预期标准值控制着迭代次数。那么现在,如果你从 ϑ=0 开始,那么梯度就是 ?...在这个系列文章中我还会多次谈起这个观点:任选一个策略梯度能得到好结果的问题,都能再找到一个简单得多、鲁棒得多的算法,而且能匹敌或者超越策略梯度的表现。

1.1K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度策略梯度算法是真正的策略梯度算法吗?

    具体而言,研究了: 梯度估计(Gradient Estimation):研究发现,即使智能体的奖励有所提升,用于更新参数的梯度估计通常与真实梯度不相关。...我们发现,从这个角度来看,深度策略梯度算法的行为通常偏离其概念框架的预测。我们的分析开启了巩固深度策略梯度算法基础的第一步,尤其是,我们可能需要抛弃目前以基准为中心的评估方法。...检查深度策略梯度算法的基元 梯度估计的质量 策略梯度方法的核心前提是恰当目标函数上的随机梯度上升带来优秀的策略。具体来说,这些算法使用(代理)奖励函数的梯度作为基元: ?...我们计算出的梯度估计准确度如何?为了解决该问题,研究者使用了评估估计质量最自然的度量标准:经验方差(empirical variance)和梯度估计向「真正」梯度的收敛情况。 ?...梯度估计。上一章的分析表明策略梯度算法使用的梯度估计的质量很差。即使智能体还在提升,此类梯度估计通常与真正的梯度几乎不相关(见图 3),彼此之间也不相关(见图 2)。

    70720

    各类的梯度优化

    梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法。与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降(比如lasagne, caffe 和 keras的文档)。...最后,会讨论其他有利于梯度下降优化算法的策略。 ---- 梯度下降是一种以通过在目标函数梯度 ? 的反向上更新模型参数,来最小化模型参数的目标函数 ? 的方法。学习速率 ?...---- 梯度下降算法变种 存在三种梯度下降的变种,他们不同之处在于我们在计算目标函数梯度时所用数据量的多少。依据数据的规模,我们在更新参数的准确性和执行一次更新所用时间之间进行一种折中。...批量梯度下降 普通的梯度下降,也称批量梯度下降,利用所有的训练数据计算目标函数的梯度。 ? 由于我们每进行一次参数更新需要计算整体训练数据的梯度,批量梯度下降会变得很慢并且一遇到内存吃不下数据就挂了。...值得注意的是先进的深度学习库提供对一些参数进行自动求导可以有效地计算梯度。如果你是自己来推梯度,梯度检查是一个不错的注意。本平台也推送过梯度求解过程。

    1.3K60

    梯度是如何计算的

    引言 深度学习模型的训练本质上是一个优化问题,而常采用的优化算法是梯度下降法(SGD)。对于SGD算法,最重要的就是如何计算梯度。...此时,估计跟多人会告诉你:采用BP(backpropagation)算法,这没有错,因为神经网络曾经的一大进展就是使用BP算法计算梯度提升训练速度。但是从BP的角度,很多人陷入了推导公式的深渊。...前向过程是从输入计算得到输出,而反向过程就是一个梯度累积的过程,或者说是BP,即误差反向传播。这就是BP的思想。...对于两个矩阵相乘的话,在反向传播时反正是另外一个项与传播过来的梯度项相乘。差别就在于位置以及翻转。这里有个小窍门,就是最后计算出梯度肯定要与原来的矩阵是同样的shape。那么这就容易了,反正组合不多。...活学活用: 实现一个简单的神经网络 上面我们讲了链式法则,也讲了BP的思想,并且也讲了如何对矩阵运算求梯度。

    2.6K70

    Altair库详解【Python中轻松创建漂亮的统计图表】

    在数据科学和数据可视化领域,生成清晰、漂亮的统计图表对于展示数据和传达见解至关重要。Python中有许多强大的库可以帮助我们实现这一目标,其中Altair库是一个非常流行的选择。...Altair是一个基于Vega和Vega-Lite的声明式统计可视化库,它使得生成交互式、漂亮的图表变得非常简单。...本文将介绍如何使用Altair库来轻松生成各种类型的统计图表,包括散点图、折线图、柱状图等。我们将提供代码示例来说明如何使用Altair创建这些图表,以便读者可以轻松上手并在自己的项目中使用。...,Altair还允许我们自定义图表的样式和外观。...Altair是一个基于Vega和Vega-Lite的声明式统计可视化库,具有简洁而强大的接口,使得生成各种类型的图表变得非常简单。

    24210

    梯度上升算法与随机梯度上升算法的实现

    随机梯度上升算法 当数据量达到上亿或更多数据以后,梯度上升算法中的矩阵乘法等操作显然耗时将上升到非常高的程度,那么,我们是否可以不用整个数据集作为样本来计算其权重参数而是只使用其中的一部分数据来训练呢?...随机梯度上升算法与梯度上升算法效果对比 下面代码对比了梯度上升算法与随机梯度上升算法的效果。...结果已经非常明显,虽然从波动范围来看,随机梯度上升算法在迭代过程中更加不稳定,但随机梯度上升算法的收敛时间仅仅是梯度上升算法的30%,时间大为缩短,如果数据规模进一步上升,则差距将会更加明显。...而从结果看,两个算法的最终收敛位置是非常接近的,但是,从原理上来说,随机梯度算法效果确实可能逊于梯度上升算法,但这仍然取决于步进系数、内外层循环次数以及随机样本选取数量的选择。 5....书中对比随机梯度算法与梯度上升算法的权重迭代曲线,得出结论:这里的系数没有像之前那样出现周期性波动,这归功于样本随机选择机制。 无论是算法原理还是从作者贴出的图来看都不能得到这样的结论。 6.

    71610

    脑组织中的梯度

    iii)梯度在大脑动力学和认知中的作用,以及(iv)梯度作为框架来分析和概念化大脑进化和发展的效用。...其中包括推导梯度的方法,使它们彼此对齐,分析梯度衍生特征,并评估它们与神经和非神经空间地图的关联。本期特刊中的一系列论文为日益增长的梯度分析库提供了有用的补充。...本研究将进一步回答梯度排序的意义、梯度排序与个体间变异敏感性之间的关联等重要问题。...梯度为结构-功能对应的分析提供了一个框架,而且似乎在不同的模态中梯度具有高度的收敛性然而,在不同形态的梯度中似乎也有一些明显的差异。...同样,研究已经开始绘制跨寿命的梯度重构图,并评估由于环境和疾病相关因素导致的梯度变化。这些观点将为研究皮层梯度的不变性和延展性提供重要的见解。

    55530

    PyTorch中的梯度累积

    这就是梯度累加(Gradient Accumulation)技术了 以PyTorch为例,正常来说,一个神经网络的训练过程如下: for idx, (x, y) in enumerate(train_loader...,因为PyTorch中的loss.backward()执行的是梯度累加的操作,所以当你调用4次loss.backward()后,这4个mini-batch的梯度都会累加起来。...但是,我们需要的是一个平均的梯度,或者说平均的损失,所以我们应该将每次计算得到的loss除以accum_steps accum_steps = 4 for idx, (x, y) in enumerate...mini-batch的梯度后不清零,而是做梯度的累加,当累加到一定的次数之后再更新网络参数,然后将梯度清零。...通过这种延迟更新的手段,可以实现与采用大batch_size相近的效果 References pytorch中的梯度累加(Gradient Accumulation) Gradient Accumulation

    1.5K20

    Tensorflow中的梯度裁剪

    本文简单介绍梯度裁剪(gradient clipping)的方法及其作用,不管在 RNN 或者在其他网络都是可以使用的,比如博主最最近训练的 DNN 网络中就在用。...梯度裁剪一般用于解决 梯度爆炸(gradient explosion) 问题,而梯度爆炸问题在训练 RNN 过程中出现得尤为频繁,所以训练 RNN 基本都需要带上这个参数。...常见的 gradient clipping 有两种做法根据参数的 gradient 的值直接进行裁剪根据若干参数的 gradient 组成的 vector 的 L2 norm 进行裁剪第一种做法很容易理解... 的值,若 LNorm 的梯度乘上这个缩放因子。...关于 gradient clipping 的作用可更直观地参考下面的图,没有 gradient clipping 时,若梯度过大优化算法会越过最优点。?

    2.8K30

    关于梯度下降法的理解

    关于梯度下降法的理解,梯度下降法是一个一阶最优化算法。要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。...,y 使函数z=f(x,y)取得最小值的x,y满足∂f(x,y)/∂x=0,∂f(x,y)/∂y=0 但∂f/∂x=0,∂f/∂y=0只是必要条件,且联立方程式不易求解,梯度下降法是一种替代方法 梯度下降法不直接求解方程...η(2x,2y) 2、x=1,y=2 3、(Δx,Δy)=-η(2,4) (η为正的微小常数) 梯度下降法及用法 1、从初始位置p0出发,利用公式求出最陡的坡度点p1 2、从p1出发,利用公式进一步求出最陡的坡度点...,,∂f/∂xn)为函数f在点(x1,x2,...xn)处的梯度 然后从点(x1,x2,...xn)向(x1+Δx1,x2+Δx2,...xn+Δxn)移动,使函数减少得最快的方向移动 以此类推,就能在...,,∂f/∂xn) (Δx1,Δx2,...Δxn)=-η∇f(η为正的微小常数) 另Δx=(Δx1,Δx2,...Δxn) 则Δx=-η∇f 下一篇将通过python实现梯度下降法求值

    67510

    深入机器学习的梯度优化

    而常见的优化算法中,有梯度下降、遗传算法、模拟退火等算法,其中用梯度类的优化算法通常效率更高,而使用也更为广泛。...一、梯度 我们先引出梯度的定义: 梯度是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数 简单对于二维的情况,梯度也就是曲线上某点的切线斜率,数值就是该曲线函数的导数,如y=x^2^ ,求导...换句话说,沿着函数(曲线)的任意各点位置取梯度相反的方向,如y=x^2^ + 3z^2^ 的负梯度-(2x, 6z),也就是多元函数下降最快的地方,越容易找到极值。这也就是梯度下降算法的基本思想。...二、梯度下降算法 2.1 梯度下降的基本原理 梯度类的优化算法,最为常用的就是随机梯度下降,以及一些的升级版的梯度优化如“Adam”、“RMSP”等等。...对应的算法步骤,直接截我之前的图: 与梯度下降一起出现的还有个梯度上升,两者原理一致,主要是术语的差异。简单来说,对梯度下降目标函数取负数,求解的是局部最大值,相应需要就是梯度提升法。

    40710

    使用动量的梯度下降法

    update your weights instead 指数加权平均参考前一篇博客:https://blog.csdn.net/Solo95/article/details/84837217 使用动量的梯度下降法...如图所示,普通的梯度下降法如图中蓝色画线所示,它在接近最优值红点时,会上下摆动,导致不能很快的收敛到红点,而且如果摆动的幅度过大还会导致发散(紫色画线所示),这也是为什么不能采用很大的learning_rate...所以我们引入了指数加权平均来计算梯度的平均值,这会抵消大部分梯度的垂直方向上的摆动,同时保留水平方向上的前进速度,使其更快收敛。...使用动量的梯度下降法,“动量”,来自对它的物理上的解释,相当于在一个碗里丢一个小球,通过赋予小球动量,使其减少在碗壁上的左右摆动,让它更快到达碗底,。 使用动量的梯度下降法计算方法 ?...vdb=βvdb+(1−β)dbv_{db}=\beta v_{db}+(1-\beta)dbvdb​=βvdb​+(1−β)db 注意beta=0beta=0beta=0时,就退化成了普通的梯度下降。

    68820

    OpenCV计算图像的梯度特征

    计算图像的梯度是在进行图像处理时经常用到的方法,但是这玩意自己手写未免效率低而且容易出错。OpenCV里集成了相应的函数,只不过用的人好像并不多导致我找了半天才找到。姑且记一下以备日后使用。...Sobel算子分别求x和y方向的梯度,卷积核的大小我设置的是3。...得到的mag就是对应每个像素的梯度矩阵。实际上这也可以算成边缘检测吧。...对于Sobel函数有个注意点,他的第二个参数是扩展了像素的数值范围,因为梯度是有方向的,所以sobel函数得到的是有正有负的值,所以相当于扩大了取值。...得到的结果通常会用直方图来表示, hist(phase.ravel(),256,[0,256]) 输出的图像就是梯度按照角度的分布。

    83620

    线上的MySQL优化案例

    线上的SQL优化案例(一) 今天上班的时候,业务方询问了一个问题,说是某一服务每次在查询的时候会有0.5s的延迟,让DBA帮忙查一查到底是什么原因,听到0.5s的这个数字的时候,我感觉问题倒不是很严重...,我解决这个问题的方法如下: 1、先查看了一下慢日志中的内容,发现慢日志中没有具体的记录。...这个问题比较好解决,其实他的本质是设定的慢日志的阈值是1s,只有超过1s的SQL语句才会被记录,这里我把参数long_query_time的值设置成为0.4,这样,就可以把查询超过0.4s的SQL都记录到慢日志里面了...4、初步修改意见 有了对表结构的认知和SQL语句,我当时的第一反应是这个SQL写的是否满足需求,问了一下业务方,他们说是为了查询uid写出来的SQL,那么其实这个SQL中的select *是不必要的...,只有1,索引这个索引应该修改,具体的改法有很多,我是通过修改联合索引的先后顺序,将基数大的字段放在前面,这样扫描的时候能够过滤的更加准确一些。

    1.3K20

    被Altair圈粉了!这款Python数据可视化库真香!

    我们来看看利用Altair做出的可视化效果!...可以将可视化作品导出为PNG/SVG 格式的图片、独立运行的HTML 格式的网页,或者在线上Vega-Lite 编辑器中查看运行效果。 在Altair中,使用的数据集要以“整洁的格式”加载。...Pandas 中的 DataFrame 是 Altair 使用的主要数据结构之一。Altair对Pandas的DataFrame有很好地加载效果,加载方法简单高效。...各章概要 第1 章,介绍Altair 的安装方法和Jupyter 的安装方法,重点讲解Altair 数据集的JSON 数据结构和Pandas 的数据框对象,以及数据预处理的高效工具。...第4 章,从图形构成出发,介绍使用Altair 理解数据的实现方法,以及使用Altair绘制分区图形、分层图形和连接图形的实现方法。

    1.6K30
    领券