首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Airflow Dag从不按照Google Composer上的时间表运行

Apache Airflow 是一个开源的工作流调度平台,它允许用户定义、调度和监控复杂的工作流任务。当 Airflow DAG 不按照 Google Composer 上的时间表运行时,可能是由多种原因造成的。以下是一些可能的原因及其解决方法:

可能的原因

  • 配置错误:确保 schedule_interval 配置正确,可以使用 Cron 表达式或时间 delta 来定义。
  • 时区设置:Airflow 使用 UTC 时间来调度任务,检查系统时区设置是否正确。
  • 任务依赖关系:如果任务依赖关系没有正确设置,可能会影响调度器的工作。
  • 调度器问题:调度器可能出现故障或日志中显示有错误或异常信息。

解决方法

  • 检查配置:核实 schedule_interval 的配置是否正确,确保使用正确的 Cron 表达式或时间 delta。
  • 调整时区:确认系统时区设置,并在 Airflow 配置中指定正确的时区。
  • 管理任务依赖:仔细检查任务之间的依赖关系,确保它们被正确定义,没有形成循环依赖。
  • 检查调度器状态:查看调度器的日志文件,寻找错误信息,必要时重启调度器。

通过上述步骤,通常可以定位并解决 Airflow DAG 不按时间表运行的问题。如果问题依旧存在,建议查阅 Airflow 的官方文档或社区论坛,寻求更多帮助。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

大规模运行 Apache Airflow 的经验和教训

在撰写本文时,我们正通过 Celery 执行器和 MySQL 8 在 Kubernetes 上来运行 Airflow 2.2。 Shopify 在 Airflow 上的应用规模在过去两年中急剧扩大。...在 Shopify 中,我们利用谷歌云存储(Google Cloud Storage,GCS)来存储 DAG。...经过几次试验,我们发现,在 Kubernetes 集群上运行一个 NFS(Network file system,网络文件系统)服务器,可以大大改善 Airflow 环境的性能。...虽然基于 crontab 的时间表不会导致这种激增,但它们也存在自己的问题。人类偏向于人类可读的时间表,因此倾向于创建在整点、每小时、每晚的午夜运行的作业,等等。...要启动一个从不同队列运行任务的工作者,可以使用以下命令: bashAirflow celery worker -queues 这可以帮助确保敏感或高优先级的工作负载有足够的资源

2.7K20

Airflow 实践笔记-从入门到精通一

采用Python语言编写,提供可编程方式定义DAG工作流,可以定义一组有依赖的任务,按照依赖依次执行, 实现任务管理、调度、监控功能。...当一个任务执行的时候,实际上是创建了一个 Task实例运行,它运行在 DagRun 的上下文中。...在airflow 2.0以后,因为task的函数跟python常规函数的写法一样,operator之间可以传递参数,但本质上还是使用XComs,只是不需要在语法上具体写XCom的相关代码。...当数据工程师开发完python脚本后,需要以DAG模板的方式来定义任务流,然后把dag文件放到AIRFLOW_HOME下的DAG目录,就可以加载到airflow里开始运行该任务。...airflow standalone 第二种方法是:按照官方教程使用docker compose(将繁琐多个的Docker操作整合成一个命令)来创建镜像并完成部署。

5.5K11
  • 你不可不知的任务调度神器-AirFlow

    AirFlow 将workflow编排为tasks组成的DAGs,调度器在一组workers上按照指定的依赖关系执行tasks。...调度器:Scheduler 是一种使用 DAG 定义结合元数据中的任务状态来决定哪些任务需要被执行以及任务执行优先级的过程。调度器通常作为服务运行。...例如,LocalExecutor 使用与调度器进程在同一台机器上运行的并行进程执行任务。其他像 CeleryExecutor 的执行器使用存在于独立的工作机器集群中的工作进程执行任务。...此外,还支持图标视图、甘特图等模式,是不是非常高大上? Hello AirFlow!...tutorial # 打印出 'tutorial' DAG 的任务层次结构 airflow list_tasks tutorial --tree 然后我们就可以在上面我们提到的UI界面中看到运行中的任务了

    3.7K21

    助力工业物联网,工业大数据之服务域:定时调度使用【三十四】

    目标:了解AirFlow的常用命令 实施 列举当前所有的dag airflow dags list 暂停某个DAG airflow dags pause dag_name 启动某个DAG airflow...DAG的状态 airflow dags state dag_name 列举某个DAG的所有Task airflow tasks list dag_name 小结 了解AirFlow的常用命令 14:邮件告警使用...分布式程序:MapReduce、Spark、Flink程序 多进程:一个程序由多个进程来共同实现,不同进程可以运行在不同机器上 每个进程所负责计算的数据是不一样,都是整体数据的某一个部分 自己基于...Worker节点上 所有Executor向Driver反向注册,等待Driver分配Task Job是怎么产生的?...算法:回溯算法:倒推 DAG构建过程中,将每个算子放入Stage中,如果遇到宽依赖的算子,就构建一个新的Stage Stage划分:宽依赖 运行Stage:按照Stage编号小的开始运行 将每个

    22420

    Apache Airflow的组件和常用术语

    除此之外,元数据数据库还可以安全地存储有关工作流运行的统计信息和外部数据库的连接数据。...通过此设置,Airflow 能够可靠地执行其数据处理。结合 Python 编程语言,现在可以轻松确定工作流中应该运行的内容以及如何运行。在创建第一个工作流之前,您应该听说过某些术语。...术语DAG(有向无环图)通常用于与Apache Airflow一起使用。这是工作流的内部存储形式。术语 DAG 与工作流同义使用,可能是 Airflow 中最核心的术语。...因此,DAG 运行表示工作流运行,工作流文件存储在 DAG 包中。下图显示了此类 DAG。这示意性地描述了一个简单的提取-转换-加载 (ETL) 工作流程。...边缘的状态颜色表示所选工作流运行中任务的状态。在树视图(如下图所示)中,还会显示过去的运行。在这里,直观的配色方案也直接在相关任务中指示可能出现的错误。只需单击两次,即可方便地读取日志文件。

    1.2K20

    Airflow2.2.3 + Celery + MYSQL 8构建一个健壮的分布式调度集群

    1集群环境 同样是在Ubuntu 20.04.3 LTS机器上安装Airflow集群,这次我们准备三台同等配置服务器,进行测试,前篇文章[1]中,我们已经在Bigdata1服务器上安装了airflow的所有组件...UID,且保证此用户有创建这些持久化目录的权限 docker-compose up airflow-init 如果数据库已经存在,初始化检测不影响已有的数据库,接下来就运行airflow-worker...服务 docker-compose up -d 接下来,按照同样的方式在bigdata3节点上安装airflow-worker服务就可以了。...部署完成之后,就可以通过flower查看broker的状态: 3持久化配置文件 大多情况下,使用airflow多worker节点的集群,我们就需要持久化airflow的配置文件,并且将airflow同步到所有的节点上...)的同步问题,后期使用CICD场景的时候,便可以直接将dag文件上传到Bigdata1节点上即可,其他两个节点就会自动同步了。

    1.8K10

    DAG、Workflow 系统设计、Airflow 与开源的那些事儿

    工作中两个 SDE 讨论技术问题,DAG 和 Array/Linkedlist/Tree 算的上是同一级的词汇、知识,默认彼此都懂。...怎么处理网络间的异常? 更多深入的细节思考、而不是夸夸其他的将概念,可以给你的系统设计面试大大加分。 ---- 在 Google 中搜索 Airflow,看到的可能是 ?...但今天我们想谈的是 Airbnb 开源的 Airflow, Github 上两千星的项目,一个挺不错的 Workflow 实现。...传统 Workflow 通常使用 Text Files (json, xml / etc) 来定义 DAG, 然后 Scheduler 解析这些 DAG 文件形成具体的 Task Object 执行;Airflow...但总体上,可读性中上,系统的扩展性非常好。 但我们想说的是,Airflow 真的是一个可以拿来即用、而且相当好用的东西。

    3.2K40

    Agari使用Airbnb的Airflow实现更智能计划任务的实践

    Agari,是一家电子邮件安保公司,拦截钓鱼网站的问题,正越来越多地利用数据科学、机器学习和大数据的业务尤其出现在如Linkedln、Google和Facebook这样的数据驱动公司,以满足迅速增长的数据和建模需求...创建DAG Airflow提供一个非常容易定义DAG的机制:一个开发者使用Python 脚本定义他的DAG。然后自动加载这个DAG到DAG引擎,为他的首次运行进行调度。...首先是图形视图,它通过执行2个 Spark作业开始了运行:第一个将一些未经任何处理的控制文件从Avro转换为以日期划分的Parquet文件,第二个运行聚集并标识上特别的日期(比如运行日期)。...Airflow命令行界面 Airflow还有一个非常强大的命令界面,一是我们使用自动化,一个是强大的命令,“backfill”,、允许我们在几天内重复运行一个DAG。...DAG度量和见解 对于每一个DAG执行,Airflow都可以捕捉它的运行状态,包括所有参数和配置文件,然后提供给你运行状态。

    2.6K90

    Airflow DAG 和最佳实践简介

    Airflow架构 Apache Airflow 允许用户为每个 DAG 设置计划的时间间隔,这决定了 Airflow 何时运行管道。...Airflow包含4个主要部分: Webserver:将调度程序解析的 Airflow DAG 可视化,并为用户提供监控 DAG 运行及其结果的主界面。...数据库:您必须向 Airflow 提供的一项单独服务,用于存储来自 Web 服务器和调度程序的元数据。 Airflow DAG 最佳实践 按照下面提到的做法在您的系统中实施 Airflow DAG。...避免将数据存储在本地文件系统上:在 Airflow 中处理数据有时可能很容易将数据写入本地系统。因此,下游任务可能无法访问它们,因为 Airflow 会并行运行多个任务。...使用 SLA 和警报检测长时间运行的任务:Airflow 的 SLA(服务级别协议)机制允许用户跟踪作业的执行情况。

    3.2K10

    大数据调度平台Airflow(五):Airflow使用

    图片7、执行airflow按照如下步骤执行DAG,首先打开工作流,然后“Trigger DAG”执行,随后可以看到任务执行成功。...图片查看task执行日志:图片二、DAG调度触发时间在Airflow中,调度程序会根据DAG文件中指定的“start_date”和“schedule_interval”来运行DAG。...定义DAG运行的频率,可以配置天、周、小时、分钟、秒、毫秒)以上配置的DAG是从世界标准时间2022年3月24号开始调度,每隔1天执行一次,这个DAG的具体运行时间如下图: 自动调度DAG 执行日期自动调度...:00 ~ 2022-03-25 00:00:00 ,在Airflow中实际上是在调度周期末端触发执行,也就是说2022-03-24 00:00:00 自动触发执行时刻为 2022-03-25 00:00...如下图,在airflow中,“execution_date”不是实际运行时间,而是其计划周期的开始时间戳。

    11.7K54

    Airflow配置和使用

    Airflow独立于我们要运行的任务,只需要把任务的名字和运行方式提供给Airflow作为一个task就可以。...-05-14 最新版本的Airflow可从https://github.com/apache/incubator-airflow下载获得,解压缩按照安装python包的方式安装。...为了方便任务修改后的顺利运行,有个折衷的方法是: 写完task DAG后,一定记得先检测下有无语法错误 python dag.py 测试文件1:ct1.py from airflow import DAG...但内网服务器只开放了SSH端口22,因此 我尝试在另外一台电脑上使用相同的配置,然后设置端口转发,把外网服务器 的rabbitmq的5672端口映射到内网服务器的对应端口,然后启动airflow连接 。...,有没有某个任务运行异常 检查airflow配置路径中logs文件夹下的日志输出 若以上都没有问题,则考虑数据冲突,解决方式包括清空数据库或着给当前 dag一个新的dag_id airflow resetdb

    13.9K71

    任务流管理工具 - Airflow配置和使用

    Airflow独立于我们要运行的任务,只需要把任务的名字和运行方式提供给Airflow作为一个task就可以。...-05-14 最新版本的Airflow可从https://github.com/apache/incubator-airflow下载获得,解压缩按照安装python包的方式安装。...为了方便任务修改后的顺利运行,有个折衷的方法是: 写完task DAG后,一定记得先检测下有无语法错误 python dag.py 测试文件1:ct1.py from airflow import DAG...但内网服务器只开放了SSH端口22,因此 我尝试在另外一台电脑上使用相同的配置,然后设置端口转发,把外网服务器 的rabbitmq的5672端口映射到内网服务器的对应端口,然后启动airflow连接 。...--debug的输出,有没有某个任务运行异常 检查airflow配置路径中logs文件夹下的日志输出 若以上都没有问题,则考虑数据冲突,解决方式包括清空数据库或着给当前dag一个新的dag_id airflow

    2.8K60

    调度系统Airflow的第一个DAG

    [本文出自Ryan Miao] 数据调度系统可以将不同的异构数据互相同步,可以按照规划去执行数据处理和任务调度. Airflow就是这样的一个任务调度平台....访问airflow地址,刷新即可看到我们的dag. 开启dag, 进入dag定义, 可以看到已经执行了昨天的任务....点击任务实例, 点击view log可以查看日志 我们的任务在这台机器上执行,并打印了hello, 注意, 这个打印的日期....任务实例 任务设定了运行时间,每次运行时会生成一个实例,即 dag-task-executiondate 标记一个任务实例.任务实例和任务当前代表的执行时间绑定....执行日期是任务实例运行所代表的任务时间, 我们通常叫做execute-date或bizdate, 类似hive表的的分区. 为什么今天执行的任务,任务的时间变量是昨天呢?

    2.7K30

    Airflow 使用简单总结

    简单来说,它可以用来调度你写的 Python 脚本,能实现对你脚本执行过程的监控以及日志的输出,一个脚本可以包括多个任务步骤,组成业务上需要的工作流水线。...下图是展示一些 dags 历史执行情况,绿色表示成功,红色表示失败,任务执行可以在Web UI 上点击运行dag,也可以通过调用 Airflow 的 API 接口运行指定的 dag 。...在页面上还能看到某个 dag 的任务步骤依赖关系,下图是用的最简单的串行 下面展示的是每个步骤的历史执行情况 在代码中按照规定好的语法就能设置每个 dag 的子任务以及每个子任务之间的依赖关系...(绿框) 对于开发人员来说,使用 Airflow 就是编写 dags 文件 编写 DAG 的流程: 先用装饰器@dag 定义一个 DAG,dag_id就是网页上DAG的名称,这个必须是唯一的,不允许和其他的...get_current_context() 是 Airflow 自带的函数,获取上下文信息,包含给DAG传递的参数,通过 parmas 这个 key 获取。

    91720

    没看过这篇文章,别说你会用Airflow

    Worker:Airflow Worker 是独立的进程,分布在相同 / 不同的机器上,是 task 的执行节点,通过监听消息中间件(redis)领取并且执行任务。...具体来说,不同 pipeline 虽然特性完全不一样,但是相同点是都是数据的 Extract & Transform & Load 操作,并记录 track 信息, 并且都是运行在 AWS EMR 上的...由于 Airflow DAG 是面向过程的执行,并且 task 没办法继承或者使用 return 传递变量,但是代码组织结构上还是可以面向对象结构组织,以达到最大化代码复用的目的。...灵活使用各种 Callback & SLA & Timeout 为了保证满足数据的质量和时效性,我们需要及时地发现 pipeline(DAG) 运行中的任何错误,为此使用了 Airflow Callback...比如两个 batch 都执行之后一起回收资源,而不是各自申请自己的资源然后分别回收。 公司业务方对 batches 之间的执行顺序是有要求的,即需要保证 batch 按照时间顺序来对下游发布。

    1.6K20

    Apache Airflow单机分布式环境搭建

    Airflow的可视化界面提供了工作流节点的运行监控,可以查看每个节点的运行状态、运行耗时、执行日志等。也可以在界面上对节点的状态进行操作,如:标记为成功、标记为失败以及重新运行等。...list_tasks $dag_id # 清空任务实例 $ airflow clear $dag_id # 运行整个dag文件 $ airflow trigger_dag $dag_id...,首页如下: 右上角可以选择时区: 页面上有些示例的任务,我们可以手动触发一些任务进行测试: 点击具体的DAG,就可以查看该DAG的详细信息和各个节点的运行状态: 点击DAG中的节点,就可以对该节点进行操作...: 自定义DAG 接下来我们自定义一个简单的DAG给Airflow运行,创建Python代码文件: [root@localhost ~]# mkdir /usr/local/airflow/dags...可以看到,该节点被调度到了airflow_worker2上: middle节点则被调度到了airflow_worker1上: 至此,我们就完成了airflow分布式环境的搭建和验证。

    4.5K20

    大数据调度平台Airflow(六):Airflow Operators及案例

    Airflow Operators及案例Airflow中最重要的还是各种Operator,其允许生成特定类型的任务,这个任务在实例化时称为DAG中的任务节点,所有的Operator均派生自BaseOparator...end_date(datetime.datetime):DAG运行结束时间,任务启动后一般都会一直执行下去,一般不设置此参数。...如下:二、​​​​​​​SSHOperator及调度远程Shell脚本在实际的调度任务中,任务脚本大多分布在不同的机器上,我们可以使用SSHOperator来调用远程机器上的脚本任务。...SSHOperator调度远程节点脚本案例按照如下步骤来使用SSHOperator调度远程节点脚本:1、安装“apache-airflow-providers-ssh ”provider package...使用HiveOperator时需要在Airflow安装节点上有Hive客户端,所以需要在node4节点上配置Hive客户端。

    8.1K54
    领券