首页
学习
活动
专区
圈层
工具
发布

惊呆了,LeetCode居然挂了……LeetCode周赛第281场解析

统计各位数之和为偶数的整数个数 难度:零星 给你一个正整数 num ,请你统计并返回 小于或等于 num 且各位数字之和为 偶数 的正整数的数目。...仔细分析可以发现,我们可以求出nums数组中每一个和k的最大公约数,因为除了最大公约数之外的因子我们并不关心,不会对答案产生影响。...所以首先我们可以进行一重转化,将nums数组中的每一个变成它和k的最大公约数。...其次,当a和b相等时,a不能和a自己构成答案,所以我们需要去掉这种情况。...这也不能怪,本身算法当中也是包含数论的。 好了,关于这次的比赛就先聊到这里,感谢大家的阅读。

80910

人工智能之数据分析 Pandas:第二章 Series

Series 是一个带标签索引的一维数组,由两部分组成:values(值):实际存储的数据,底层为 NumPy 数组(ndarray),支持整数、浮点、字符串、布尔值等任意类型,也可包含缺失值 NaN。...从列表或 NumPy 数组创建import pandas as pdimport numpy as np# 列表(默认整数索引)s1 = pd.Series([10, 20, 30])# 自定义索引s2...,则对应值为 NaNs5 = pd.Series(data_dict, index=['数学', '物理']) # 输出:数学 90.0,物理 NaN(注意 dtype 变为 float64)3....切片s['a':'c'] # 显式切片 → 包含 'c'(前闭后闭)s.iloc[0:2] # 隐式切片 → 不包含索引 2(前闭后开)3....= NaN,不能用 == 判断,应使用 isnull() 或 pd.isna()含 NaN 的 Series,dtype 通常为 float64索引可重复,但慎用重复索引会导致 s['key'] 返回多个值

25010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

    p=22849 当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。...这些数字本身并不能说明什么,但如果我们把这个模型的表现与另一个模型进行比较,那么我们就可以推断出一个模型是否比另一个模型更适合数据。 我们还可以绘制来自滚动原点的预测结果。...predro(x, h , ori ) 请注意,return2的值与return1的值不能直接比较,因为它们是由不同的起点生成的。这一点在我们绘图时可以看出来。...这个数组有3个时间序列和来自8个原点的3步超前预测的维度。 最后,我们可以写一个循环并产生预测结果。...此外,xreg与之前的例子不同,因为它现在不应该包含因变量。

    7.7K10

    拓端tecdat|R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

    p=22849 原文出处:拓端数据部落公众号 当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。...这些数字本身并不能说明什么,但如果我们把这个模型的表现与另一个模型进行比较,那么我们就可以推断出一个模型是否比另一个模型更适合数据。 我们还可以绘制来自滚动原点的预测结果。...predro(x, h , ori ) 请注意,return2的值与return1的值不能直接比较,因为它们是由不同的起点生成的。这一点在我们绘图时可以看出来。...这个数组有3个时间序列和来自8个原点的3步超前预测的维度。 最后,我们可以写一个循环并产生预测结果。...此外,xreg与之前的例子不同,因为它现在不应该包含因变量。

    1.4K20

    Introduction to debugging neural networks

    神经网基本上比大多数程序更难调试,因为大多数神经网络错误不会导致类型错误或运行时间错误。他们只是导致神经网络难以收敛。特别是当你刚接触这个的时候,它可能会让你非常沮丧!...如果你的网络仍然不能过度拟合训练集的10个样本,请再次确认数据和标签是否是正确对应的。尝试将batch size设为1来检查batch计算中的错误。...但你可能发现它不能解决这个问题中最困难的版本。超参数的调整就是其中的关键。也许有人仅仅下载了一个CNN包然后在上面跑自己的数据集,并告诉你超参数的调整并不会带来改变。...花一些时间来熟悉在标准数据集(如ImageNet或Penn Tree Bank)上训练的成熟网络中的组件的权值直方图应该是什么样子。...随机搜索可以产生你想不到的超参数组合, 并且能减少很大工作量一旦你已经训练形成了对于给定超参数会带来什么样的影响的直觉。

    1.2K60

    你应该知道的神经网络调试技巧

    神经网基本上比大多数程序更难调试,因为大多数神经网络错误不会导致类型错误或运行时错误。它们只是导致神经网络难以收敛。特别是当你刚接触这个的时候,它会让人非常沮丧!...如果你的网络仍然不能过度拟合训练集的10个样本,请再次确认数据和标签是否是正确对应的。尝试将batch size设为1来检查batch计算中的错误。...但你可能发现它不能解决这个问题中最困难的版本。超参数的调整就是其中的关键。也许有人仅仅下载了一个CNN包然后在上面跑自己的数据集,并告诉你超参数的调整并不会带来改变。...花一些时间来熟悉在标准数据集(如ImageNet或Penn Tree Bank)上训练的成熟网络中的组件的权值直方图应该是什么样子。...随机搜索可以产生你想不到的超参数组合, 并且能减少很大工作量一旦你已经训练形成了对于给定超参数会带来什么样的影响的直觉。

    1.2K70

    Objective-C源文件编译过程

    比如宏定义、条件编译、文件包含。...如下命令可以对.c、.m源文件进行预处理,其中参数-E就是对源文件进行预处理操作: clang -E xxx.m 如果我们的.m文件中import(文件包含)了其他的文件或者其他的库,执行以上命令对OC...如果a和b都是整型或浮点型,这说明“+”运算符具有匹配的运算分量。如果a或b其中一个是字符串类型,则说明“+”运算符不具备匹配的运算分量。...又比如,很多语言中要求数组的下标是一个非负整数,如果浮点数作为下标,编译器就必须报告错误。...生成中间代码 在把源程序翻译成目标代码的过程中,一个编译器可能构造出一个或多个中间表示(Intermediate Representation或IR)。这些中间表示可以有多种形式。

    10K51

    MADlib——基于SQL的数据挖掘解决方案(20)——时间序列分析之ARIMA

    对于时间序列的预测,由于很难确定它与其它因变量的关系,或收集因变量的数据非常困难,这时我们就不能采用回归分析方法进行预测,而是使用时间序列分析来进行预测。...影响时间序列的构成因素可归纳为以下四种: 1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳地变化或移动。...timestamp_column TEXT 包含时间戳(或索引)数据的列的名称。可以一个序列索引(INTEGER)或日期/时间值(TIMESTAMP)。...表2 arima_train函数主输出表列说明 概要输出表包含ARIMA模型描述性统计信息,具有以下列: 列名 数据类型 描述 input_table TEXT 源数据表名。...non_seasonal_orders INTEGER[] 非季节性ARIMA模型的[p, d, q]参数数组。 include_mean BOOLEAN ARIMA模型中是否包含均值。

    1.4K20

    【愚公系列】2023年07月 Pandas数据分析(Series 和 Index)

    Series 对象可以通过传递一个列表或数组创建。...Index 对象可以通过传递一个列表或数组创建。...它可能意味着名称1到3包含或位置索引1到3不包含。 为了解决这些问题,Pandas还有两种“风格”的方括号,你可以在下面看到: .loc总是使用标号,并且包含间隔的两端。...通常,你通过向read_csv提供一个标志来接收一个带有NaNs的dataframe。否则,可以在构造函数或赋值运算符中使用None(尽管不同数据类型的实现略有不同,但它仍然有效)。...这张图片有助于解释这个概念: 你可以使用NaNs做的第一件事是了解你是否有NaNs。从上图可以看出,isna()生成了一个布尔数组,而.sum()给出了缺失值的总数。

    64810

    Python 3中使用ARIMA进行时间

    ARIMA是可以适应时间序列数据的模型,以便更好地了解或预测系列中的未来点。 有三个不同的整数( p , d , q )用于参数化ARIMA模型。...这包括模型中包含差异量(即从当前值减去的过去时间点的数量)以适用于时间序列的术语。 直观地说,这将类似于说如果过去三天的温度差异非常小,明天可能会有相同的温度。 q是模型的移动平均部分。...在统计和机器学习中,这个过程被称为模型选择的网格搜索(或超参数优化)。 在评估和比较配备不同参数的统计模型时,可以根据数据的适合性或准确预测未来数据点的能力,对每个参数进行排序。...这里,每个重量的p值都低于或接近0.05 ,所以在我们的模型中保留所有权重是合理的。...如果季节性ARIMA模型不能满足这些特性,这是一个很好的迹象,可以进一步改善。

    1.5K20

    用python做时间序列预测九:ARIMA模型简介

    这是在ARIMA(1,1,1)下的预测结果,给出了一定的序列变化方向,看上去还是可以的。不过所有的预测值,都在真实值以下,所以还可以试试看有没有别的更好的阶数组合。...其实如果尝试用ARIMA(3,2,1)会发现预测的更好: ? AUTO ARIMA 通过预测结果来推断模型阶数的好坏毕竟还是耗时耗力了些,一般可以通过计算AIC或BIC的方式来找出更好的阶数组合。...pmdarima模块的auto_arima方法就可以让我们指定一个阶数上限和信息准则计算方法,从而找到信息准则最小的阶数组合。...在时间序列模型中,还可以引入其它相关的变量,这些变量称为exogenous variable(外生变量,或自变量),比如对于季节性的预测,除了之前说的通过加入季节性参数组合以外,还可以通过ARIMA模型加外生变量来实现...def load_data(): """ 航司乘客数时间序列数据集 该数据集包含了1949-1960年每个月国际航班的乘客总数。

    33.1K1414

    python用ARIMA模型预测CO2浓度时间序列实现|附代码数据

    第3步-ARIMA时间序列模型 在时间序列预测中使用的最常见的方法是被称为ARIMA模型。ARIMA是可以拟合时间序列数据的模型,以便更好地理解或预测序列中的未来点。...对于每种参数组合,我们使用 模块中的SARIMAX() 拟合新的季节性ARIMA模型。探索了整个参数范围,我们的最佳参数集便会成为产生最佳性能的一组参数。...在统计和机器学习中,此过程称为用于模型选择的网格搜索(或超参数优化)。 在评估和比较不同参数的统计模型时,可以根据其拟合数据的程度或其准确预测未来数据点的能力来对每个模型进行排名。...下面的代码块通过参数组合进行迭代,并使用中的 SARIMAX 函数 statsmodels 来拟合相应的Season ARIMA模型。...在这里,每个权重的p值都小于或接近 0.05,因此将所有权重保留在我们的模型中是合理的。 在拟合季节性ARIMA模型时,重要的是运行模型诊断程序,以确保没有违反模型所做的假设。

    1.1K10

    ARIMA模型预测CO2浓度时间序列-python实现

    ARIMA是可以拟合时间序列数据的模型,以便更好地理解或预测序列中的未来点。 有三种不同的整数(p, d, q)是用来参数化ARIMA模型。...包含了要应用于时间序列的差分量(即,要从当前值中减去的过去时间点的数量)。从直觉上讲,这类似于如果最近三天的温差很小,则明天的温度可能相同。 q 是 模型的 _移动平均_部分。...对于每种参数组合,我们使用 模块中的SARIMAX() 拟合新的季节性ARIMA模型。探索了整个参数范围,我们的最佳参数集便会成为产生最佳性能的一组参数。...下面的代码块通过参数组合进行迭代,并使用中的 SARIMAX 函数 statsmodels 来拟合相应的Season ARIMA模型。...在这里,每个权重的p值都小于或接近 0.05,因此将所有权重保留在我们的模型中是合理的。 在拟合季节性ARIMA模型时,重要的是运行模型诊断程序,以确保没有违反模型所做的假设。

    2.6K10

    python用ARIMA模型预测CO2浓度时间序列实现|附代码数据

    第3步-ARIMA时间序列模型 在时间序列预测中使用的最常见的方法是被称为ARIMA模型。ARIMA是可以拟合时间序列数据的模型,以便更好地理解或预测序列中的未来点。...对于每种参数组合,我们使用 模块中的SARIMAX() 拟合新的季节性ARIMA模型。探索了整个参数范围,我们的最佳参数集便会成为产生最佳性能的一组参数。...在统计和机器学习中,此过程称为用于模型选择的网格搜索(或超参数优化)。 在评估和比较不同参数的统计模型时,可以根据其拟合数据的程度或其准确预测未来数据点的能力来对每个模型进行排名。...下面的代码块通过参数组合进行迭代,并使用中的 SARIMAX 函数 statsmodels 来拟合相应的Season ARIMA模型。...在这里,每个权重的p值都小于或接近 0.05,因此将所有权重保留在我们的模型中是合理的。 在拟合季节性ARIMA模型时,重要的是运行模型诊断程序,以确保没有违反模型所做的假设。

    1.4K20

    python用ARIMA模型预测CO2浓度时间序列实现

    ARIMA是可以拟合时间序列数据的模型,以便更好地理解或预测序列中的未来点。 有三种不同的整数(p, d, q)是用来参数化ARIMA模型。...对于每种参数组合,我们使用 模块中的SARIMAX() 拟合新的季节性ARIMA模型。探索了整个参数范围,我们的最佳参数集便会成为产生最佳性能的一组参数。...在统计和机器学习中,此过程称为用于模型选择的网格搜索(或超参数优化)。 在评估和比较不同参数的统计模型时,可以根据其拟合数据的程度或其准确预测未来数据点的能力来对每个模型进行排名。...下面的代码块通过参数组合进行迭代,并使用中的 SARIMAX 函数 statsmodels 来拟合相应的Season ARIMA模型。...在这里,每个权重的p值都小于或接近 0.05,因此将所有权重保留在我们的模型中是合理的。 在拟合季节性ARIMA模型时,重要的是运行模型诊断程序,以确保没有违反模型所做的假设。

    1.5K30

    python用ARIMA模型预测CO2浓度时间序列实现|附代码数据

    第3步-ARIMA时间序列模型 在时间序列预测中使用的最常见的方法是被称为ARIMA模型。ARIMA是可以拟合时间序列数据的模型,以便更好地理解或预测序列中的未来点。...对于每种参数组合,我们使用 模块中的SARIMAX() 拟合新的季节性ARIMA模型。探索了整个参数范围,我们的最佳参数集便会成为产生最佳性能的一组参数。...在统计和机器学习中,此过程称为用于模型选择的网格搜索(或超参数优化)。 在评估和比较不同参数的统计模型时,可以根据其拟合数据的程度或其准确预测未来数据点的能力来对每个模型进行排名。...下面的代码块通过参数组合进行迭代,并使用中的 SARIMAX 函数 statsmodels 来拟合相应的Season ARIMA模型。...在这里,每个权重的p值都小于或接近 0.05,因此将所有权重保留在我们的模型中是合理的。 在拟合季节性ARIMA模型时,重要的是运行模型诊断程序,以确保没有违反模型所做的假设。

    1.7K00

    python3用ARIMA模型进行时间序列预测

    这样,可以将ARIMA模型配置为执行ARMA模型甚至简单的AR,I或MA模型的功能。 对于时间序列采用ARIMA模型,则假定生成观测值的基础过程是ARIMA过程。...可以通过调用 predict() 函数并指定要预测的一个或多个时间的索引来进行预测。 我们将ARIMA模型拟合到整个Shampoo Sales数据集,并检查残差。...这将返回一个包含一个包含预测的元素的数组。 如果我们进行了任何微分( 在配置模型时_d> 0)_,我们也希望预测值在原始比例内。...重复该过程,直到在样本内或样本外观察值(例如训练或测试数据集)上达到理想的拟合水平为止。...如何使用ARIMA模型执行快速的时间序列分析。 如何使用ARIMA模型进行样本预测之外的预测。 您对ARIMA或本教程有任何疑问吗? 在下面的评论中提出您的问题,我们会尽力回答。

    1.7K20
    领券