本文为 2018 年 5 月 11 日在微软亚洲研究院进行的 CVPR 2018 中国论文宣讲研讨会中第三个 Session——「Person Re-Identification and Tracking」环节的四场论文报告。
自 2012 年以来,经过视觉领域诸多学者们的不懈努力,「物体识别」、「人脸检测」等传统任务的性能在一定程度上达到饱和,因此纵观本届 979 篇入选论文,我们会看到研究者们纷纷将目光转向近年来的一些新兴问题。在今年,商汤的研究者们就大规模分布式训练、人体理解与行人再识别、三维场景理解与分析、底层视觉算法、物体检测、识别与跟踪、深度生成式模型、视频与行为理解等多个问题展示了自己的最新工作。
前几天英伟达开源了DG-Net的源码。让我们来回顾一下这篇CVPR19 Oral的论文。
机器之心报道 作者:吴欣 不久之前,CVPR 2018 论文接收列表公布。据机器之心了解,上海交通大学电子系人工智能实验室倪冰冰教授课题组有 6 篇论文入选,本文对这几篇论文做了简介,更多详细内容可通过论文网盘链接下载查看。 CVPR 2018 论文接收列表:http://cvpr2018.thecvf.com/files/cvpr_2018_final_accept_list.txt Paper 1:《Fine-grained Video Captioning for Sports Narrative》
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab33篇,相比过去两年成绩大幅提升。 作为计算机视觉领域级别最高的研究会议,CVPR2019录取论文代表了计算机视觉领域在2019年最新和最高的
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
本文作者为悉尼科技大学博士生武宇(Yu Wu),他根据 CVPR 2018 录用论文 Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning 为 AI 科技评论撰写了独家解读稿件。
「旷视是一家有追求的公司。这个追求包含两方面的含义,一个是团队的每个人都希望能做最顶尖的技术;另一个是企业在商业化落地能脚踏实地,产品可以真正为用户带来价值。」
本文作者 Liqian Ma,他为 AI 科技评论撰写了他作为第一作者被 CVPR 2018 录用的 Spotlight 论文解读稿件。
行人重识别 Person Re-identification / Person Retrieval 专知荟萃 行人重识别 Person Re-identification / Person Retrieval 专知荟萃 入门学习 进阶论文及代码 Person Re-identification / Person Retrieval Person Search Re-ID with GAN Vehicle Re-ID Deep Metric Learning Re-ID with Attributes Pre
本文介绍了多模态人物识别和跨模态人物检索的任务定义、研究现状、技术方法、系统实现和典型应用场景。多模态人物识别和跨模态人物检索是当前计算机视觉和人工智能领域的研究热点,其应用场景非常广泛,包括安防监控、人员管理、智能零售等。
[1]《Towards Improved Cartoon Face Detection and Recognition Systems》
雷锋网 AI 研习社按:计算机视觉技术从 70 年代到现在,40 多年时间得到迅速发展,许多计算机视觉的应用出现在了生产生活领域。尤其是到了 2012 年,基于深度学习的图像识别技术出现,极大地提高了计算机视觉的识别精确度,在一些特定场景下,机器的识别错误率已经远低于人眼识别的错误率。与此同时,研究员也发现在真实世界中,那些细粒度,实例级级别的物体识别还存在很大的挑战! 为了能使这一领域得到快速突破,谷歌向全球 CV 领域的开发者们发送了 iNaturalist 2018 挑战赛的邀请函。iNaturali
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab33篇,相比过去两年成绩大幅提升。
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
本文主要是介绍自己做的一个工作:SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identication(https://arxiv.org/abs/1807.00537),用了 Softmax 的变种,在行人重识别上取得了非常好的效果,并且端到端训练,网络结构简单。在 Market-1501 数据集上达到 94.4% 的准确率(并且不需要 re-ranking 和 fine-tuning)。
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab 33篇,相比过去两年成绩大幅提升。
民以食为天,如何提升超大规模配送网络的整体配送效率,改善数亿消费者在”吃“方面的体验,是一项极具挑战的技术难题。面向未来,美团正在积极研发无人配送机器人,建立无人配送开放平台,与产学研各方共建无人配送创新生态,希望能在一个场景相对简单、操作高度重复的物流配送中,提高物流配送效率。在此过程中,美团无人配送团队也取得了一些技术层面的突破,比如基于神经网络StarNet的行人轨迹交互预测算法,论文已发表在IROS 2019。IROS 的全称是IEEE/RSJ International Conference on Intelligent Robots and Systems,IEEE智能机器人与系统国际会议,它和ICRA、RSS并称为机器人领域三大国际顶会。
微软亚洲研究院是国内顶级CV研究机构,众多CV黑科技的诞生地,2020年始,亚研院盘点了2019年CV领域重点论文,大部分附有开源代码,希望对大家有帮助。
城市利用交通摄像头作为全市范围内的传感器来优化交通流量和管理交通事故潜力巨大。但现有技术缺乏大范围跟踪车辆的能力,这些车辆跨越多个摄像机,分布在不同的十字路口,天气条件也各不相同。
近年来,随着监控摄像头的普及与应用,监控摄像头系统在打击罪犯和刑侦安全方面起到了至关重要的作用。利用监控系统查找犯罪嫌疑人,从而侦破案件已经成为公安机关的重要破案手段。这一重要应用使得行人重识别问题得到广泛关注。行人重识别是指给定行人在某一监控摄像头下的图片,利用计算机视觉算法在其余监控摄像头下识别出这一特定行人。
这不是石建萍第一次来 CVPR 了。过去这八年,她几乎没落下过一届,倒也习惯了每年办一次美国签证。只不过,这么多年以来,参加 CVPR 的身份却在不断变化:从一个本科生,到博士生,到研究员,再到如今商汤科技的研究总监。
近年来,行人重识别技术在业内得到了越来越多的关注,CVPR投稿中关于ReID的研究逐年增多。随着行人重识别技术的日渐成熟,其巨大的应用价值和市场潜力得到了越来越多的关注。
CVPR 2020 | Social-STGCNN:一种用于行人轨迹预测的社会时空图卷积神经网络
这里分享下大佬(目前就职于大疆创新)的研究生期间的成长路线。虽然说没有适合每个人的方法,因为每个人的特点和所处的环境都不一样,但有个参考总是好的,所以我在这悄悄把自己研究生三年的经历写一下,前面可能会写的详细一点,希望能对这些同学有所帮助。
1. Deep High-Resolution Representation Learning for Human Pose Estimation
这篇文章有4篇论文速递,都是人脸方向,包括人脸识别、人脸表情识别、人脸情绪分类和人脸属性预测。其中一篇是CVPR 2018 workshop。
作者 | 费棋 近日, ApolloScape 宣布开放了大规模自动驾驶数据集。 它是 Apollo 自动驾驶项目的一个研究型项目,旨在促进自动驾驶的各方面创新,号称是世界上最大自主驾驶技术开源数据集。 根据 ApolloScape 官方介绍,它开放了对像素级标注的场景解析数据集和仿真工具的访问,并将定期添加新的数据集和新功能。 ▌场景解析数据集 场景解析是自动驾驶的核心能力,他们通过高精度车载传感器采集并标注了大量道路场景。ApolloScape 发布的整个数据集包含数十万帧逐像素语义分割标注的高分辨
标题:《Relation-Aware Global Attention for Person Re-identification》
内容提要:行人重识别技术,广泛应用于智慧城市、自动驾驶等场景中,近年取得飞速发展。这也得益于训练数据规模的扩大、深度学习的发展。
如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一ID的行人图或行人视频。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhangjunhit/article/details/53261053
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
随着计算机技术的日新月异,尤其是以人工智能和机器学习为代表的新兴技术快速发展,使得以AI为主题的会议层出不穷。那么了解AI领域的最新科研成果与发展趋势,就一定要看顶会,顶会,顶会!
发展论述:对于Overfeat、R-CNN方法,只是利用卷积神经网络进行特征提取,并没有改变搜索框提取目标区域的策略,算法的在速度上仍存在瓶颈。
AI 科技评论按:本文作者郭瑞娥,首发于中科院自动化所「智能感知与计算研究中心」微信公众号,AI 科技评论获授权转载。 CVPR 是计算机视觉、模式识别和人工智能领域国际顶级会议,2018 年 6 月 18-22 日将在美国盐湖城召开,届时 AI 科技评论也会在现场带来一线报道。 不论你是论文录用作者,还是即将参会的企业机构,欢迎联系 AI 科技评论小编(微信号:aitechreview)报道/合作哟。 智能感知与计算研究中心为中科院自动化所独立建制的科研部门,致力于研究泛在智能感知理论与技术以及与之相伴的
PS:Amusi前几天在忙其它事,论文速递耽搁了近一个星期,还请大家见谅。因为时间因素,和往常一样,每篇paper不附带相应的图示。如果本文中出现明显重大的翻译问题,还请大家指出,谢谢
自动化所智能感知与计算研究中心在生成对抗网络(GAN)基础上提出高保真度的姿态不变模型来克服人脸识别任务中最为经典的姿态不一致问题。该模型不仅在多个基准数据集的视觉效果和定量指标都优于目前已有的基于生成对抗网络的方法,而且将生成图像的分辨率在原有基础上提升了一倍。该论文已被神经信息处理系统大会(NIPS)收录。
随着近年来智能城市监控的发展和自动驾驶的兴起,视频目标跟踪得到了更多的研究者的关注,其中包括单目标跟踪、多目标跟踪、跨摄像头多目标跟踪等等。目标跟踪也涉及很多相关领域,例如视频分割、轨迹预测、行人重识别等等。5月30日(周四),两位主讲嘉宾(高旭,王强)为大家精选了视频目标跟踪及相关领域中的几篇代表性工作,和大家一起学习、分享最新的研究进展。
继寒武纪、银河水滴、中科视拓、中科慧眼等AI公司后,又一家“中科院系”AI初创公司浮出水面。
CVPR 2018还有3个月就开始了,目前已经公布了所有收录论文名单,为了能够让大家更深刻了解CVPR的论文,我们进行了一些CVPR 2018论文解读的整理,后续还会持续更新。
AI 科技评论按:CVPR 2018 将于 2018 年 06 月 18-22 日在美国盐湖城举办,除了主会议程,各式各样的 Workshop 也值得大家一探究竟。 其中,CVPR 2018 Visual Understanding of Humans in Crowd Scene (VUHCS 2018)Workshop 尤为亮眼,该 Workshop 由新加坡国立大学 LV 组联合美国卡内基梅隆大学、中国中山大学主办。今年,主办方在 VUHCS 2017 的基础上进行了延伸与拓展,除接收相关论文,还将迎
行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。
在越发重视科技自主创新,新产业国际竞争逐渐激烈的时代,我们更加坚信,科研道路没有捷径可走,只有脚踏实地,一步一个脚印,不断积累方能实现创新。 7年来,犀牛鸟基金为全球范围内的青年学者提供了解产业真实问题、接触业务实际需求的机会,并通过连接青年学者与企业研发团队,开展基础扎实的产学科研合作,推动双方学术视野的拓展及原创应用成果的落地,为科技自主研发的探索和创新储备能量。 2018年CCF-腾讯犀牛鸟基金合作进入收官阶段,小编将分四期介绍全部25个科研基金项目,本期将继续重点介绍《计算机视觉及模式识别》研究
本田最近与波士顿大学合作,公布了在旧金山湾区采集的104小时**驾驶行为数据集,总体积大约150GB。
计算机视觉领域,利用局部特征、全局特征、深度特征以及上下文特征已经是大家习以为常的操作,尤其是前三种特征的使用,近期对上下文及显著性特征关注较多,今天和大家分享的一个技术,其也是利用了目标所在场景的上下文特征,更精确去得到目标的位置。
领取专属 10元无门槛券
手把手带您无忧上云