首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

12.12机器学习平台哪家好

在当今数字化经济深水区,企业对应用和系统的需求呈指数级增长,传统开发模式已无法满足需求。低代码和无代码的易用性、高效率和可视化拖拽技术特性,受到全球各行业的青睐,成为企业数字化转型的必备工具之一。以下是一些顶级机器学习平台及其特点:

Apple CreateML

  • 特点:提供可视化拖拽开发模式,适合创建iOS应用程序,支持图像、视频、运动、声音、文本等多种数据类型的模型训练。
  • 适用场景:适合需要在iOS应用中集成机器学习功能的开发者。

Google AutoML

  • 特点:支持可视化拖拽开发,即使没有专业开发背景的人员也能快速构建自定义机器学习模型。
  • 适用场景:适合希望快速原型开发并部署机器学习模型的用户。

Microsoft Lobe

  • 特点:提供无代码开发模式,简化了机器学习模型的构建过程。
  • 适用场景:适合初学者和希望避免复杂编程的用户。

PyCaret

  • 特点:作为Python中的开源低代码机器学习库,自动执行机器学习工作流程。
  • 适用场景:适合需要快速构建端到端机器学习解决方案的开发者。

Google Teachable Machine

  • 特点:基于网络的工具,支持无代码可视化拖拽开发,模型为真正的TensorFlow.js模型。
  • 适用场景:适合希望利用Web技术进行机器学习模型开发的用户。

Amazon SageMaker

  • 特点:通过完全托管的基础设施、工具和工作流程,为任何用例构建、训练和部署机器学习模型。
  • 适用场景:适合需要大规模机器学习训练和部署的企业级用户。

Akkio

  • 特点:支持无代码可视化开发模式,帮助用户快速构建AI模型。
  • 适用场景:适合希望快速构建和部署AI模型的用户,尤其适合文本分类、预测等业务场景。

选择合适的机器学习平台需要考虑多个因素,包括功能和特性、算法和模型、数据处理和可视化、集成和部署、成本和可用性、用户界面和易用性以及支持和社区。建议根据具体需求选择最适合自己的平台。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

真人语音合成平台哪家好 真人语音合成应用场景有哪些

很多人在无聊的时候,就会选择去听小说语音播报等等,这些语音播报大多都是技术合成的,因为真人的语音播报费用非常高,而语音合成成本并不算高,下面就将为大家介绍真人语音合成平台。...真人语音合成平台哪家好 随着网络技术的不断发展,网络上出现了很多的真人语音合成平台。但有些真人语音合成平台并不正规,合成的语音并没有质量保证。云服务器就是一个好的真人语音合成平台,产品优势非常的多。...更重要的是,云服务器语音合成平台还能够进行个性化的定制。 真人语音合成应用场景有哪些 真人语音合成的应用场景非常广泛,主要可以用来进行机器人发声。...现在很多的场合都是能够看见机器人的,他们能够和人进行自由的交流,而交流的语言需要使用语音合成。真人语音合成还可以应用在有声读物制作,尤其是在有声小说中,可以提升用户的体验。...语音合成应用越来越多,真人语音合成平台哪家好?正规的语音合成平台会比较好,因为在收费上比较合理,而且制作出来的语音合成和真人没有什么区别,如果大家想要进行真人语音合成,云服务器就是一个非常不错的选择。

7.6K30

Google机器学习教程心得(三) 好的feature

什么造就好的Feature 这里举了一个对两种狗狗做分类的问题介绍好的Feature应有的特性 简化问题 好的feature能有力地说明两个类别的不同 单个feature往往不完美,所以需要多个...如果不同的label中,这个feature的值分布越均匀,则这个feature的分类作用越弱 在同一种眼睛颜色中,不同狗的数量差不多,说明眼的颜色的分类作用弱,这样的feature会降低分类器的准确性 好的...应该是相互独立的,能够提供更多有效信息, 每个feature在分类器中都占一定的重要性,而如果feature间不独立,重要性的比重也会与原本的计划有偏差 feature应当预处理地尽可能与结果直接相关 有好的...feature还不够,还要有好的feature之间的好的组合 总结 好的feature应该是这样的: Informative Independent Simple 代码 Good-Feature:构造数据集与绘制柱状图

92170
  • 机器学习虽好,也要看什么场合!

    这不需要建立模型,也不需要什么高深的机器学习理论。 1 什么时候要用机器学习? 那在什么情况下我们需要使用机器学习呢? 当然是输入训练集中没有的数据啦!...机器学习是不是能帮我们搞定这种情况? 没错儿! 但是话说回来,如果这个输入和输出之间压根儿没什么联系的话,机器学习也爱莫能助。...记住,机器学习是用来学习数据中隐藏的数据模式的。 重复已有的答案算什么本事?机器学习能对没见过的新情况进行解决! 程序猿可能会问,事儿都让你干了,那我的任务是啥?...机器学习不是鹦鹉学舌,死记硬背已有数据集是没用的。机器学习的魅力和强大之处在于,它能够从已有数据中概括和抽象出数据背后的规则,从而普适地应用于新的场景。...(好期待呀,因为我还没有编出来呢) 我知道肯定有不少人会使用传统的统计分析学方法来给出的答案,但是你开心就好~黑猫白猫,抓到老鼠的就是好猫~ 想要了解统计分析方法和机器学习的区别请戳这里:http://

    40220

    机器学习边缘产品评测:问推理性能哪家强?

    特别是,我们将重点关注边缘机器学习的性能结果。 什么是边缘计算? 边缘计算包括将数据处理任务委派给网络边缘上尽可能靠近数据源的设备。...这使得能够以非常高的速度进行实时数据处理,这对于具有机器学习功能的复杂物联网解决方案来说是必须的。最重要的是,它减轻了网络限制,降低了能耗,提高了安全性,并改善了数据保密性。...在这种新范式下,针对边缘机器学习进行了优化的专用硬件和软件库的组合产生了可大规模部署的尖端应用程序和产品。 构建这些惊人的应用程序所面临的最大挑战是音频,视频和图像处理任务。...事实证明,深度学习技术在克服这些困难方面非常成功。 在边缘实现深度学习 例如,让我们以自动驾驶汽车为例。在这里,您需要快速而一致地分析传入的数据,以破译周围的环境并在几毫秒内采取行动。...结论 这里提出的研究基于我们对为深度学习算法设计的最新边缘计算设备的探索。 我们发现Jetson Nano和Coral Dev开发板在推理时间方面表现很好。

    1.1K20

    Facebook 的应用机器学习平台

    Facebook产品或服务使用的机器学习算法。 C.Facebook内部“机器学习作为服务” Facebook有几个内部平台和工具包,目的是简化在Facebook产品中利用机器学习的任务。...Facebook大多数的机器学习训练通过FBLearner平台完成。这些工具和平台协同工作的目的是提高机器学习工程师的生产力,并帮助他们专注于算法的创新。 ? Facebook机器学习流和架构。...Caffe2是Facebook的内部训练和部署大规模机器学习模型的框架。Caffe2关注产品要求的几个关键的特征:性能、跨平台支持,以及基本的机器学习算法。...对于机器学习应用程序,这提供了一个充分利用分布式训练机制的机会,这些机制可以扩展到大量的异质资源(例如不同的CPU和GPU平台,具有不同的RAM分配)。...总结 在Facebook,研究人员发现了应用机器学习平台的规模和驱动决策方面设计中出现的几个关键因素:数据与计算机联合布局的重要性、处理各种机器工作负载的重要性,不仅仅是计算机视觉,以及来自日计算周期的空闲容量的机会

    2.3K50

    机器学习平台的演进史

    第二代机器学习平台侧重于模型:重点是快速创建和跟踪实验,以及部署、监控和理解模型。 第三代机器学习平台侧重于数据:重点是特征和标签的构建以及机器学习工作流的自动化。...这三类机器学习平台并没有绝对的优劣,对于企业而言,也不一定一开始就要选择第三代机器学习平台,凡事都要有一个演进的过程。...如果说草创阶段,大可以选择第一代机器学习平台,先让机器学习应用于业务,产生业务价值;然后再引入第二代机器学习平台让机器学习模型能快速且自动化的应用于业务。...第二代机器学习平台:基于模型的解决方案 正是因为第一代机器学习平台有着种种缺陷,于是有人开始讨论“数据科学工作流程”或机器学习开发生命周期 (MLDLC)。...第三代机器学习平台是因为 AI 算法已经足够成熟了,只需要像平台提供一些训练数据就可以让平台完成一次机器学习模型的训练和部署到生产环境。

    2.4K30

    打破“维度的诅咒”,机器学习降维大法好

    水木番 编译整理 量子位 报道 | 公众号 QbitAI 使用机器学习时,你是不是经常因为有太多无关特征而导致模型效果不佳而烦恼? ? 而其实,降维就是机器学习中能够解决这种问题的一种好方法。...云计算的突破可以帮助使用者运行大型的机器学习模型,而不用管后台的计算能力。 但是,每增加一个新特征都会增加复杂性,增大使用机器学习算法的困难。...机器学习模型可以将特征映射到结果。...机器学习工具箱中的降维 简单总结一下。 过多的特征会降低机器学习模型的效率,但删除过多的特征也不太好。...数据科学家可以用降维作为一个工具箱,生成好的机器学习模型,但和其他工具一样,使用降维的时候也有许多问题,有许多地方都需要小心。 作者简介 ?

    50140

    机器学习的数学,拿你如何是好

    热烈欢迎各位新朋友,前面写了这么多机器学习的概念解说,原来大家只喜欢我推书呀,真·五味杂陈。今天聊机器学习在数学基础方面的经典推荐。 应该说,学机器学习,数学是无论如何也绕不过去的一道坎。...不过呢,学机器学习里面的数学有一点好。 虽然口头上我们称之为机器学习的数学基础,听起来像是网络里的协议栈,数学是底层,机器学习是应用层,机器学习的数学要更高级更难一点。...所以,学机器学习的数学,要远比你想象中要学的少很多。 好了,那机器学习的数学到底该怎么学呢?无非两个字,概念。...不少观点认为机器学习就是个换了个皮的统计学,所以有人干脆激进一点,就把机器学习叫作统计学习。这里且不争论,但机器学习大量使用了统计学的概念和方法是的的确确的事实。...那对于机器学习,我们怎样才能快速了解机器学习是做什么的,又涉及哪些数学分支呢?

    64320

    机器学习在好分期资金适配中的应用实践

    机器学习和深度学习技术在很多领域扮演着越来越重要的角色,以资金适配领域来说,它们在成本节约、推荐排序、收入机会和风险监控等方面可以带来明显的好处。...但目前,机器学习和深度学习技术在资金适配方面的应用和探索仍缺乏一些经验。因此,消费分期产品“好分期”团队编写此文进行实践记录,同时也希望大家能提供一些宝贵意见。...为解决问题,我们开始将机器学习等技术应用到系统中。 机器学习在资金适配系统的实践 在金融领域,机器学习的应用越来越多,金融领域庞大的数据量也为机器学习提供了支持。...机器学习项目的成功主要依赖于构建高效的基础结构、收集适当的数据集和应用正确的算法。 用户画像 想要解决上面所说的问题,需要先尝试生成用户画像,这里面用户数据的收集和清洗是至关重要的。...应用实践 下图展示了好分期数据平台的总体架构。对于数据平台来说,最重要的是保证数据的时效性和准确性。

    83600

    机器学习平台带给QA的挑战

    机器学习平台是一款集数据集、特征工程、模型训练、评估、预测、发布于一体的全流程开发和部署的工作平台。...在谈测试机器学习平台带给QA的挑战之前,先了解一下机器学习平台是什么?...即数据科学家们的日常工作流程有: 问题定义 数据收集 预处理 构造数据集 特征工程 建模、调参 部署、在线验证 循环优化 ---- 机器学习平台的主要业务 简单理解,机器学习平台就是帮助数据科学家工作变得更简单...即机器学习平台主要业务包括(如图2): ? 图2....其它 集成Jupyter Notebook 调度等等 ---- QA面临的挑战 了解了机器学习平台的主要业务功能后,谈谈机器学习平台测试过程中,QA所面临的挑战,以及在实践的所使用的应对方案。 1.

    1.8K10

    机器学习平台的模型发布指南

    导读:近两年,各式各样的机器学习平台如雨后春笋一样出现,极大地降低了从业者的门槛。大家的关注点往往在平台如何能够高效地进行各种花样地数据预处理,如何简单易用地训练出各种模型上。但是在产出模型之后呢?...作为机器学习平台的构建者,在得到应用于不同场景、不同类型的模型后,接下来需要思考的就是模型产生价值的场景,比如: 实时预测服务:兼容不同模型,包装成用于预测的功能,进一步发布面向用户的高时效性的预测服务...所以模型发布常常碰到如下挑战: 平台往往会提供交互式的云端机器学习开发环境,供用户训练自己的模型,所以平台API需要兼容输入输出差异巨大的模型 在通过GraphDef重构模型,Weight复现参数后,作为一个图结构...api,并发布成平台服务,暴露给用户 得力于机器学习框架对运行时环境要求的一致性,平台只需要针对每种机器学习框架,把模型发布代码及依赖打包成一个Docker镜像,就能满足该框架里所有模型的发布需求...实际上,在构建机器学习平台的后期,在平台的功能点趋于稳定,各个功能的模块化日益完善的条件下,下一步必然向着更加自动化进行的,是离不开自身模型的应用的。

    3.5K30

    从零搭建机器学习平台Kubeflow

    总的来说,Kubeflow是 google 开源的一个基于 Kubernetes的 ML workflow 平台,其集成了大量的机器学习工具,比如用于交互性实验的 jupyterlab 环境,用于超参数调整的...作为一个“大型工具箱”集合,kubeflow 为机器学习开发者提供了大量可选的工具,同时也为机器学习的工程落地提供了可行性工具。...1.2 Kubeflow 背景 Kubernetes 本来是一个用来管理无状态应用的容器平台,但是在近两年,有越来越多的公司用它来运行各种各样的工作负载,尤其是机器学习炼丹。...1.3 Kubeflow与机器学习 Kubeflow 是一个面向希望构建和进行 ML 任务的数据科学家的平台。...下图显示了 Kubeflow 作为在 Kubernetes 基础之上构建机器学习系统组件的平台: kubeflow是一个胶水项目,它把诸多对机器学习的支持,比如模型训练,超参数训练,模型部署等进行组合并已容器化的方式进行部署

    8.6K43

    Weka机器学习平台的迷你课程

    这个迷你课程不是关于机器学习的教科书。 它将把您从一个懂一点机器学习的开发者转变为一个可以使用Weka平台从头到尾地处理一个数据集,并提供一个预测模型或高性能模型的开发者。...第6课:Weka中的机器学习算法 Weka平台的一个主要优点是它提供了大量的机器学习算法。 你需要了解机器学习算法。 在本课中,您将深入了解Weka中的机器学习算法。...第8课:数据的性能基准 当您开始在数据集上评估多个机器学习算法时,那么您也许需要一个比较基准。 基准结果为您提供了一个参考点,以了解给定算法的结果是好还是差,以及好多少和差多少。...第11课:集成算法之旅 Weka非常容易使用,这可能是和其他平台相比起来的最大优势。 除此之外,Weka还提供了大量的集成机器学习算法,这可能是Weka与其他平台相比的第二大优势。...我们可以看到,较大的K值的结果比默认值1好,而个中差别是显着的。 探索尝试改变KNN的其他配置属性,并建立起开发实验来调整机器学习算法的信心。

    5.6K60

    Byzer + OpenMLDB, SQL Boy 也能玩好工业级机器学习

    背景 其实,原先 Byzer 就已经可以通过几乎不需要编程就能完成整个机器学习的Pipeline,从数据加载,清洗,特征工程,模型训练对外提供端到端的 API 服务。...具体的能力可以参考这篇文章: Byzer 机器学习最简教程(无需Python!) 当然这个系列还有特征工程,深度学习等等介绍,感兴趣看看。...通常在设计特征前,用户需要根据机器学习的目标对数据进行分析,然后根据分析设计和调研特征。机器学习的数据分析和特征研究不是本文讨论的范畴,我们将不作展开。...本文假定用户具备机器学习的基本理论知识,有解决机器学习问题的能力,能够理解SQL语法,并能够使用SQL语法构建特征。...部署好特征后,我们来部署模型: 这里,我们通过注释,把我们的模型部署到一个 Rest 服务中。

    55810

    Google VS 亚马逊 VS 微软,机器学习服务选谁好?

    现在让我们来了解一下市场上最流行的机器学习平台,并考虑一下怎么选择基础架构。...亚马逊的机器学习服务、微软 Azure 机器学习云服务和 Google Cloud AI 服务是目前最领先的三个机器学习服务平台。...在本文中,我们将首先概述 Amazon、Google 和 Microsoft 这三个主要机器学习服务平台,然后比较这些供应商支持的机器学习 API。...微软 Azure 机器学习 Studio Azure 机器学习 的目的是为新手和有经验的数据科学家提供一个强大的试验平台。...如果你计划使用一些机器学习服务系统,最直接的方法就是让存储服务提供商和机器学习服务提供商保持一致,因为这会减少很多配置数据源的时间。 但是,也有一些平台可以很容易地与其他存储平台集成。

    1.9K50

    TPU、GPU、CPU深度学习平台哪家强?有人做了一个基准测试研究

    选自arXiv 作者:Yu (Emma) Wang、Gu-Yeon Wei、David Brooks 机器之心编译 参与:Nurhachu Null、张倩 GPU、TPU、CPU 都可以用于深度学习模型的训练...在本文中,来自哈佛的研究者设计了一个用于深度学习的参数化基准测试套件——ParaDnn,旨在系统地对这些深度学习平台进行基准测试。...新一代硬件基准测试 为了对最先进的深度学习平台进行基准测试,这篇论文提出了一个用于训练的深度学习模型集合。...而且,它们没有揭示深度学习模型属性和硬件平台性能之间的深刻见解,因为基准测试只是巨大的深度学习空间中的稀疏点而已。...本文为机器之心编译,转载请联系本公众号获得授权。

    1.1K30

    苹果开放机器学习API,但是没有看到苹果的机器学习开发平台

    这次,苹果不仅在iOS的自家应用中更多使用了机器学习,还把机器学习功能作为iOS API的一部分向开发者开放,希望开发者们也用机器学习的力量开发出更好的应用程序。...iOS中的机器学习 ?...在iOS的本身功能里,苹果已经尝试用机器学习带来更好的用户体验,比如在iPad上利用机器学习识别手写便签的文本、在iPhone上通过学习和预测用户的使用习惯来让iOS更省电、在照片app里自动创建的回忆相册以及面部识别...苹果没有做大而全的人工智能平台 去年苹果收购了西雅图的机器学习初创公司Turi以后,继续在西雅图成立了自己的人工智能研究实验室,聘请了华盛顿大学教授Carlos Guestrin作为机器学习总监。...所以苹果没有发布自己的机器学习开发平台、没有发布开发硬件,也没有对外公布是否挖了机器学习专家到自己团队,在这种态度下就都合情合理了。

    1.5K60

    如何写出一个好的机器学习工具库

    作者:微调 图片:pexels 编辑:统计学家 但使用工具只能让人入门,我们有没有可能自己写一个优秀的机器学习工具库,为开源做贡献,同时积累经验呢? 答案是肯定的,我试过了,是真的。...本着授人以鱼不如授人以渔,本文会从「开发者角度的来看如何做出一个好的机器学习工具库」。 1....一个好的底层设计是一个工具成败的关键点,它不仅可以降低维护成本,还可以避免不同模型见的不一致。...从机器学习,特别是Python工具库开发的角度来看有几个简单的技巧: 向量化(vectorization) numba加速(A High Performance Python Compiler:http...:https://www.zhihu.com/question/67310504」 另一个值得注意的是,大部分机器学习工具库一般不把GPU支持作为首要任务(深度学习库除外),因此可以把这个需求推后实现。

    81930
    领券