首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【推荐系统】离线增量文章画像计算(二)

2.5 离线增量文章画像计算 2.5.1 离线文章画像更新需求 第一次:所有更新,后面增量每天的数据更新26日:1:002:00,2:003:00,左闭右开,一个小时更新一次 2.5.2 定时更新文章设置...) 2.7 Word2Vec与文章相似度 2.7.1 文章相似度 需求 首页频道推荐:每个频道推荐的时候,会通过计算两两文章相似度,快速达到在线推荐的效果,比如用户点击文章,我们可以将离线计算好相似度的文章排序快速推荐给该用户...目的:保存所有历史训练的文章向量 1、加载某个频道模型,得到每个词的向量 18号频道所有文章训练模型:3000个词 2、获取频道的文章画像,得到文章画像的关键词(接着之前增量更新的文章...4、计算新文章的向量,计算新文章相似的文章以及相似度 3.1 用户画像计算更新 3.1.1 为什么要进行用户画像 而构建用户画像,不仅可以满足根据分析用户进行推荐,更可以运用在全APP所有功能上。...3.1.2 用户画像计算设计 用户画像标签建立 用户:每个频道这个用户的关键词和权重, 基本信息的结果 3.2 用户画像增量更新 3.2.1 增量用户行为日志处理 目的:首先对用户基础行为日志进行处理过滤

64310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推荐系统那点事 —— 什么是用户画像?

    用户画像在大数据分析中是一种很有用的系统,它可以各种不同的系统中,起到很关键的作用。比如搜索引擎、推荐系统、内容系统等等,可以帮助应用实现千人千面、个性化、精准等的效果。...下面将从几个方面来说一下,什么是用户画像,主要的内容来自《用户网络行为画像分析与内容推荐应用》这本书。 应用场景 数据来源 特性 建模 群体画像 画像的存储 画像的查询 画像的更新 ?...推荐系统 推荐系统可以根据用户的喜好和特征,也就是用户的画像,推荐相关的内容。比如,给一个用户定位的画像是美妆达人,那么就应该给她多推送一些面膜护肤之类的东西,而不是推一堆零食。...以上就是用户画像的基本内容,也是《用户网络行为画像分析与内容推荐应用》这本书的第一部分,后续会更新其他的部分。 参考 1 什么是定性画像、什么是定量画像?...http://www.jianshu.com/p/3750d9349b71 2 《用户网络行为画像分析与内容推荐应用》想要电子版的私M。~

    2.3K60

    推荐系统从0到1:数据与画像

    然而要想推荐达到可观的效果,深入挖掘每个模块,研读论文、优化架构是必不可少的。以下我会从数据、画像(内容/用户)、召回和排序几个部分分别详述。 1. 数据 推荐系统,最重要的是数据。...内容画像 众所周知,基于行为推荐需要一定的用户行为积累,而新闻生产速度很快,时效性要求又比较高,这时候我们需要一些 Content-based 方法来做推荐。内容画像是实现的基础。 2.1....关键词提取 分类完成之后,可以说我们的内容画像已经初见端倪。然而,仅仅精确到分类颗粒度的个性化推荐是很难满足用户的。...再比如,系统依据用户所处地域推荐内容,然而这个用户有可能只是来外地出差,他更感兴趣的可能依旧是常住地的新闻……无论如何,在计算画像的时候我们无法确保用户的意图,因此在快速反馈用户行为的同时,加上多状态的用户画像是有必要的...通常我们的做法是分别记录用户的长期和短期画像,在针对不同的画像做不同的推荐召回,以此满足用户不同状态下的阅读需求。

    2.6K50

    Django基于用户画像的电影推荐系统源码

    MongoDB、MySQL和Redis,以从豆瓣平台爬取的电影数据作为基础数据源,主要基于用户的基本信息和使用操作记录等行为信息来开发用户标签,并使用Hadoop、Spark大数据组件进行分析和处理的推荐系统...─jars (MySQL连接jar包) │ └─spark.py (Spark处理用户画像...Hadoop、Spark用于离线推荐分析,若无该需求,可选择关闭。.../spark.py ,即可每日自动处理离线数据,精准推荐,推荐方式同时包含基于电影内容(基于内容)、基于用户相似度(基于协同过滤)推荐的方式。后期如有兴趣的同学还可完善改为实时推荐。...页面顶部电影推荐 电影详情页推荐 用户注销提示 7、管理员功能 普通用户与管理员菜单栏对比 管理系统登录页面 管理系统首页工作台 管理员管理数据界面 九、注意: 1.数据库需用5.6以上的

    2.9K40

    【推荐阅读】如何用大数据构建精准用户画像?

    当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。...百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%, 订单转化率提升34%。...帮助企业依据客户消费特点推荐相关金融产品和服务,转化率将非常高。...A 寻找分期客户 利用发卡机构数据+自身数据+信用卡数据,发现信用卡消费超过其月收入的用户,推荐其进行消费分期。...C 依据自身数据(家人数据)+人生阶段信息,为用户推荐理财保险,寿险,保障保险,养老险,教育险。 D 依据自身数据+外部数据,为高端人士提供财产险和寿险。

    2.9K80

    【推荐阅读】如何用大数据构建精准用户画像?

    当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。...百分点现已全面应用用户画像技术于推荐引擎中,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%, 订单转化率提升34%。...帮助企业依据客户消费特点推荐相关金融产品和服务,转化率将非常高。...A 寻找分期客户 利用发卡机构数据+自身数据+信用卡数据,发现信用卡消费超过其月收入的用户,推荐其进行消费分期。...C 依据自身数据(家人数据)+人生阶段信息,为用户推荐理财保险,寿险,保障保险,养老险,教育险。 D 依据自身数据+外部数据,为高端人士提供财产险和寿险。

    3.7K61

    基于用户画像的实时异步化视频推荐系统

    上线了一个百台规模的ES集群,还设计开发了一套实时推荐系统。 标题有点长,其实是为了突出该推荐系统的三个亮点,一个是实时,一个是基于用户画像去做的,一个是异步化。...推荐系统有个比较特殊的地方,就是好不好不是某个人说了算,而是通过一些指标来衡量的。比如点击转化率。 *** 用户画像和视频画像 *** 用户画像则体现在兴趣模型上。...做推荐的方式可以很多,比如协同,比如各种小trick,而基于用户画像和视频画像,起步难度会较大,但是从长远角度可以促进团队对用户和视频的了解,并且能够支撑推荐以外的业务。...流式计算对推荐系统的影响很大,可以完全实现 在推荐系统中,除了接口服务外,其他所有计算相关的,包括但不限于: 新内容预处理,如标签化,存储到多个存储器 用户画像构建 如短期兴趣模型 新热数据候选集 短期协同...分布式流计算主要负责了五块: 点击曝光等上报数据处理 新视频标签化 短期兴趣模型计算 用户推荐 候选集计算,如最新,最热(任意时间段) 存储采用的有: Codis (用户推荐列表) HBase (用户画像和视频画像

    1.8K32

    新闻推荐实战(五):自动化构建用户及物料画像

    自动化构建用户及物料画像 本节内容主要讲的是上图中红框框起来的部分,也就是离线自动化构建用户和物料的画像,这部分内容在新闻推荐系统中是为系统源源不断添加新物料的途径,由于我们的物料是通过爬虫获取的,所以还需要对爬取的数据进行处理...对于用户侧的画像则是需要每天将新注册的用户添加到用户画像库中,对于在系统中产生了行为的用户,我们还需要定期的更新用户的画像(长短期)。...物料画像的更新 物料画像的更新主要有以下几个方面: 新物料画像添加到物料库中 旧物料画像,通过用户的交互记录进行更新 首先说一下新物料添加到物料库的逻辑是什么,新物料添加到物料库这件事情肯定是发生在新闻爬取之后的...然后再根据我们定义的一些字段,给画像相应的字段初始化,最后就是存入画像物料池中。 关于旧物料画像的更新,这里就需要先了解一下旧物料哪些字段会被用户的行为更新。...,物料画像及线上要存储在redis中的画像 最后其实是离线推荐的流程,离线将用户的排序列表存到redis中,线上直接取就行了 总结 这篇文章主要讲解了新闻推荐系统离线如何通过自动化的形式构建物料和用户的画像

    63630

    微信看一看:推荐系统用户画像构建指南

    导语 | 推荐系统无论在工业界还是学术界都被广泛研究,有不少关于召回和排序的工作,但是对于用户画像的研究少之又少。下文将就微信看一看推荐系统中如何构建用户兴趣标签展开讨论,希望与大家一同交流。...一、背景 用户画像是推荐系统中非常重要的一环,用户画像刻画的是否精准直接影响后续召回和排序环节的效果。 用户画像包括用户的基础信息,如性别年龄地域等。...如上图所示,推荐系统会根据用户的画像把可能感兴趣的文章推送给用户。比如一个对 NBA 感兴趣的用户,他画像中有“库里”的标签,那系统很大可能会给他曝光相应的文章。...三、画像指标 在推荐系统中除了常用的点击率和时长之外,我们还需要考虑到画像的相关指标。这里我们主要使用画像有点数和画像有点率来衡量画像的线上准确率和覆盖情况。...Build User-tag Profile in Recommendation System: https://dl.acm.org/doi/abs/10.1145/3340531.3412719 文章推荐

    2.1K32

    用户画像活动推荐系统 毕业设计 JAVA+Vue+SpringBoot+MySQL

    一、摘要 1.1 项目介绍 基于JAVA+Vue+SpringBoot+MySQL的用户画像活动推荐系统,使用了协同推荐算法,包含了标签管理、活动档案、活动收藏、活动报名、活动留言模块,还包含系统自带的用户管理...、部门管理、角色管理、菜单管理、日志管理、数据字典管理、文件管理、图表展示等基础模块,用户画像活动推荐系统基于角色的访问控制,给活动管理员、普通用户使用,可将权限精确到按钮级别,您可以自定义角色并分配权限...基于用户画像的活动推荐系统的功能性需求主要包含数据中心模块、兴趣标签模块、活动档案模块、活动报名模块、活动留言模块这五大模块,系统是基于浏览器运行的web管理后端,其中各个模块详细说明如下。...2.1 数据中心模块 数据中心模块包含了基于用户画像的活动推荐系统的系统基础配置,如登录用户的管理、运营公司组织架构的管理、用户菜单权限的管理、系统日志的管理、公用文件云盘的管理。...公用云盘管理模块,用于统一化维护基于用户画像的活动推荐系统中的图片,如合同签订文件、合同照片等等。

    54550

    中诚信征信闫文涛:个人征信和企业征信未来将走向融合

    2、企业信用,包括大型企业信用和中小微企业信用。...近年来,中诚信征信在企业信用、个人信用和资产信用三个方面均开展了业务,并通过大数据、人工智能等技术的应用保证各项业务正常运行。...早些年,电子科技尚未普及,数据量相对匮乏,想要对用户进行有效的信用画像可谓是难上加难。...如今,互联网和移动互联网的发展带动了数据量的增长,IDC预测,2022年全球数据量将超过40ZB(ZB的概念就是万亿的GB);大数据、云技术、人工智能等新兴技术的应用,使得行之有效的用户画像可以在较短时间完成...对于中小微企业,征信机构会将个人信用、企业信用进行整合,只有把二者统一起来,才能更好地刻画出小微企业的信用情况。闫文涛说:“之前,个人征信和企业征信泾渭分明,但在未来,二者将走向融合。”

    1.1K70

    港大开源推荐系统新范式RLMRec!大模型加持,准确提炼用户商品文本画像

    准确提炼用户/商品文本画像 为了获得文本信号表征,我们首先需要拥有文本模态上对于用户和商品的准确画像描述,其需要是无偏差的,从而能够反应出用户和商品真实的偏好。...我们希望用户画像能够有效的反应出其喜好什么类别的商品,并且商品画像能够反应出其会吸引什么样的用户群体。...在本节中,我们基于大语言模型(LLMs)和思维链(Chain-of-Thought)的思想,提出了一种从商品到用户的文本画像构建路径。...简单来说,我们先基于用户的反馈或是商品的自身描述,基于大语言模型的知识先对商品的画像进行总结,并且要求其提供思考的过程,基于此,我们可以首先获得基于商品的无偏文本画像。...其次我们将用户对商品的反馈以及商品文本画像相结合,输入给大语言模型,使其总结用户画像,因为用户的反馈中包含了用户的真实喜好,因此语言模型能够准确的把握住用户的真实喜好,从而产生准确的文本画像。

    72510

    【专知荟萃13】工业学术界用户画像 User Profile 实用知识资料全集(入门进阶竞赛论文PPT,附PDF下载)

    欢迎大家分享转发 用户画像——专知荟萃 基础入门 进阶文章 竞赛 Papers 视频教程 PPT 基础入门 架构师特刊:用户画像实践 by infoq http://www.infoq.com/cn.../minibooks/profile-in-practice luckydogzzy 用户画像学习日记 https://www.gitbook.com/@luckydogzzy 用户画像学习日记: https...一般用户画像的作用是什么?...waimai-ups.html 数据驱动精准化营销在大众点评的实践 by 美团点评技术团队 https://tech.meituan.com/dp-growth-hacker.html 基于内容和用户画像的个性化推荐...肖仰华 复旦大学 https://pan.baidu.com/s/1hsKSoyK 大数据背后的360度用户画像,助力11.11新零售 http://www.pmcaff.com/article/index

    2.9K30

    理想中的Web3信誉体系:如何在Web2基础上升级?

    理想中的 Web3 或者新一代信誉体系应当是拥有全面的信用数据、强大的技术支撑以及合理的监管流程: 第一,打造全面立体的信用画像。...未来信誉体系应该包含链下及链上数据,从各个维度来记录个人及企业信用行为。比如在传统金融数据的基础上,链上相关交互数据也应当被包括在信用报告中。...数据完整性和难以篡改性也能够保证个人及企业信用行为得到更好的规范,做到自觉抵制不良行为。 第二,拥有强大且隐私保护的数据存储和技术。...个人用户可以选择将自己的信用分或评级在社媒和 dApp 里露出,在 Web3 社交中展现良好画像,并利用信用报告获得潜在福利。

    73230

    【活动】客户标签画像推荐系统讲座于9月19日举行,小伙伴赶紧报名吧!

    活动概况 ---- 活动主题:客户标签画像推荐系统 活动嘉宾:李永、符鹏飞 活动对象:信息主管CIO、业务部门主管、工程师、SI人员 活动时间: 2015年9月19日14:00~17:30 活动地点...:大数据厂商联盟、PPV课 嘉宾介绍及分享内容 ---- 嘉宾:李永——大数据厂商联盟秘书长 分享内容:《怎样规划部署大数据分析应用》 1,怎样部署客户(消费者、会员)统一视图(客户标签与360度画像...) 2,怎样部署产品标签画像与订单分析 3,怎样部署基于实时行为数据的推荐引擎 4,怎样部署(客户标签画像:产品标签画像)* 推荐引擎=精准营销 5,怎样采集存储门店、WEB、电商行为数据和机器感应器数据...6,怎样规划部署企业数据统一存储查询共享分析平台 7,怎样部署大数据云服务 (Openstack+Hadoop) 8,怎样规划部署大数据安全运维平台和服务 9,金融行业历史数据存储查询冠字号和客户视图画像推荐系统

    1K80
    领券