顺着自己来的方向回去找一遍?四处联系工作人员求助?或者干脆因为行李证件丢失而错过航班,不得不开始复杂的补办流程?
“这只猪总是用侧脸面对观众,另一面却从来没人见过。奇怪的是,即使从侧颜看去,还是两只眼睛和两个鼻孔。”
跨年龄的人脸识别和验证是一个非常具有挑战性的问题,如果能对年龄进行归一化,去除年龄因素的干扰,将大大提升跨年龄人脸识别的精度。
此前,谷歌和波士顿大学的研究者提出了一种「个性化(Personalization)」的文本到图像扩散模型 DreamBooth,用户只需提供 3~5 个样本 + 一句话,AI 就能定制照片级图像。
基于3D模型的换脸算法是一类非常经典的思路,它首先对人脸进行三维重建,然后进行姿态对齐,纹理映射和融合改进,能够取得非常好的换脸效果,以“On Face Segmentation, Face Swapping and Face Perception”为代表。
英伟达近日提出的新一代 StyleGAN,通过对 StyleGAN 的生成效果分析,他们对不完美的工作设计了改进和优化方法,使得生成图片的质量和效果更上一层楼。
论文地址:https://arxiv.org/pdf/2307.06949.pdf
典型的卷积神经网络由卷积层、池化层、全连接层构成。在这里以LeNet5网络来说明,下图是这个网络的结构:
人脸识别安全人设崩塌,黑客“套路”究竟有多深?在GeekPwn2017国际安全极客大赛上,毕业于浙江大学计算机专业的90后女黑客“tyy”就演示了人脸识别设备的漏洞。通过利用设备本身存在的漏洞,选手仅
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
机器之心专栏 浙江大学计算机辅助设计与图形学国家重点实验室 来自浙江大学计算机辅助设计与图形学国家重点实验室的研究者,提出了一个鲁棒且易于实现的基于视频序列的人脸胖瘦参数化方法。即使在侧脸、长发、戴眼镜及轻微遮挡等极端情况下,该方法依旧能够取得连续稳定的结果。 短视频的流行催生了基于视频的人脸编辑需求。尽管基于图像的人脸编辑方法已经比较成熟,但直接将基于图像的编辑方法应用于人脸视频通常会产生不稳定、不连续的结果。 浙江大学计算机辅助设计与图形学国家重点实验室在人脸胖瘦参数化研究领域有着较为丰富的经验,他们曾
人脸关键点算法已经从2D人脸渐渐发展变化为3D人脸,2D人脸是给定一副图片,找到图片中人脸关键点,这些关键点都是有着明确语义信息的,或者说都是可见的。而对于3D人脸,本身就是有一个立体结构的,也就是所谓的深度信息。在3D人脸中所要预测出来的关键点数量会远远地多于2D人脸。通过3D人脸关键点定位,能更好的对人脸来进行重构。目前2D人脸对关键点的检测已经相当准确了,从2D过度到3D人脸是一个主要的问题。
导读:目前图像识别技术在很多专业的图像预测领域已经达到甚至超过人类的识别标准,人脸识别的技术目前已经相对成熟,一般对于面部的识别能达到很高的识别准确率。 9月15号上映的《猩球崛起3:终极之战》被网友评为最高级的好莱坞科幻大片,在影片中,主演安迪魔术般的由人演进为猩猩凯撒。这部史诗级别的电影以科幻为视角,以人猿“换脸”,展开最激烈的“战争”。在动作捕捉技术的帮助下,安迪演绎了这个不可能的角色,大量自然光照下的凯撒的面部特写,技术上,近乎100%的以假乱真的真实程度,动作捕捉技术,本质上就是一种数字技术的化
选自metaphysic.ai 作者:Martin Anderson 机器之心编辑部 看似「天衣无缝」的伪造技术,也是有漏洞的。 视频伪造是 Deepfake 技术最为主要的代表,其制作假视频的技术也被称为人工智能换脸(AI face swap)。一直以来,研究者发现 DeepFake 存在着这样一个漏洞:当伪造人脸头部转到 90 度时(侧脸 90 度),对方就能识别视频中的人脸是不是伪造的。 这是怎么回事呢?在最近的一项测试中,技术专家兼评论员 Bob Doyle 允许研究人员进行一些关于人脸伪造的测试,
就在这周,支付宝开放了「宠物鼻纹识别」技术,将根据鼻纹信息创建宠物电子档案,主要应用于为猫、狗等宠物投保「宠物险」。我们验证一下这项技术真的可以帮助区分狗狗的特征吗?
AI 科技评论按:2018 年 4 月 14 日-15 日,中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所举办第四期「CSIG 图像图形学科前沿讲习班」。
如今,人脸识别技术在生活中的应用已经越来越多。2017年12月25日,腾讯社交广告、微信支付与绫致时装集团达成合作,依托于腾讯优图实验室的人脸识别技术等,在全国首次推出人脸智慧时尚店。在深圳和广州同时开业的JACK&JONES、VERO MODA人脸智慧时尚店,让“靠脸购物”成为现实:走进一家线下门店,你裤兜里不用揣着胀鼓鼓的钱包,不用走到前台掏出手机,刷脸注册会员、刷脸试装、刷脸支付……“靠脸”就能买到心仪的潮流服饰。 一次完整的“刷脸”购物是怎样的体验? 在这两家人脸智慧时尚店中,全新的智慧购物体验
---- 新智元报道 编辑:时光 【新智元导读】最近,浙大研究团队实现了对视频中的人像进行改变,调整参数可以扩大或者缩小。 视频可以瘦脸?来看看究竟怎么回事。 这是美国女演员詹妮弗·劳伦斯(Jennifer Lawrence),左边是youtube上的一段原视频,右边则是「瘦脸」之后的她。 微圆的下巴变成了尖的,瓜子脸快成锥子脸了,似乎也显得老了一些。 既然能「瘦脸」,那是不是也可以「宽脸」呢? 没问题,而且效果拔群,都快要变成国字脸啦。 我们再来给小扎变一个: 一边是「宽脸」,一边是「瘦脸
前一段时间用于人物换脸的deepfake火爆了朋友圈,早些时候Cycle GAN就可以轻松完成换脸任务,其实换脸是计算机视觉常见的领域,比如Cycle GAN ,3dmm,以及下文引用的论文均可以使用算法实现换脸(一定程度上能模仿表情),而不需要使用PS等软件手工换脸(表情僵硬,不符合视频上下文),只能说deepfake用一个博取眼球的角度切入了换脸算法,所以一开始我并没有太过关注这方面,以为是Cycle GAN干的,后来隐约觉得不对劲,因为GAN系列确实在image to image领域有着非凡的成绩,但GAN的训练是出了名的不稳定,而且收敛时间长,某些特定的数据集时不时需要有些trick,才能保证效果。但deepfake似乎可以无痛的在各个数据集里跑,深入阅读开源代码后(https://github.com/deepfakes/faceswap),发现这东西很多值得一说的地方和优化的空间才有了这一篇文章。 本文主要包括以下几方面: 1.解读deepfake的model和预处理与后处理的算法以引用论文。(目前大多文章只是介绍了其中的神经网络,然而这个项目并不是单纯的end-to-end的输出,所以本文还会涉及其他CV的算法以及deepfake的介绍)。 2.引入肤色检测算法,提升换脸的视觉效果。
TFace是由腾讯优图实验室研发的可信人脸算法研究项目,重点关注人脸识别、人脸安全、人脸质量等技术领域,通过开源自研的方法,方便研究人员快速复现我们的工作。自开源以来,本项目在业界获得了广泛关注,最近TFace发布了新版本,在优化了原有人脸识别模块的同时,新增了人脸安全模块。
前言 前一段时间用于人物换脸的deepfake火爆了朋友圈,早些时候Cycle GAN就可以轻松完成换脸任务,其实换脸是计算机视觉常见的领域,比如Cycle GAN ,3dmm,以及下文引用的论文均可以使用算法实现换脸(一定程度上能模仿表情),而不需要使用PS等软件手工换脸(表情僵硬,不符合视频上下文),只能说deepfake用一个博取眼球的角度切入了换脸算法,所以一开始我并没有太过关注这方面,以为是Cycle GAN干的,后来隐约觉得不对劲,因为GAN系列确实在image to image领域有着非凡的成
过去,办事要“刷脸”,看在你的面子上这事儿兴许才能走的通…… 吃饭也要“刷脸”,老板看着是熟客,就能直接打折啦…… 现在,直接“刷脸”就可以当会员,打折积分买衣服&支付这件事真的可以轻松实现啦。 昨天,微信支付与绫致时装集团达成合作,在全国首次推出人脸智慧时尚店。 在这个时尚店不带钱不说,手机都不用带,人脸识别给会员智能推荐商品,付款也靠“脸”—— 在深圳九方购物中心的Jack&Jones和广州白云万达广场VERO MODA人脸智慧时尚店,都可直接体验。 在这两家时尚店——“刷脸”就知道你是会员
我就说吃瓜群众平常要多关注科技新闻,一个在科技界已经诞生了一年多的“老技术”Deepfake 居然因为“明星换脸”的视频火出了圈。
这怎么可能!后来我才知道,这是人家Deepfake的一个视频,把视频中人物的脸和声音替换了。
拍图三十秒,修图半小时,互联网公司们都深谙这种心理,使出浑身解数,让“变脸”更加完美。比如一直针对女性群体,主打拍照的OV手机(OPPO和Vivo),在这两年逆袭走低性价比和高性能的小米。
4月1日愚人节,也是张国荣的忌日。今天,在哥哥张国荣离开的第16个年头,有网友用AI让张国荣“复活”,并且演唱了经典歌曲《千千阙歌》、《玻璃之情》。
现在合成照片的真实感在某些程度上已经比真的还真,在这其中,GANs(生成性对抗网络)和变分自动编码器功不可没。
人脸AI技术如今无处不在。不仅手机上有面部识别、换脸、美颜等应用,去年GAN在合成人脸图片上也取得了重大突破。
现在,操纵视觉内容已经很普遍,也是数字社会中最重要的话题之一。比如,DeepFakes 展示了如何使用计算机图形学和视觉技术进行视频换脸,进而破坏别人的声誉。人脸是目前视觉内容操纵方法的主要兴趣点,这有很多原因。首先,人脸重建和追踪是计算机视觉中比较成熟的领域,而它正是这些编辑方法的基础。其次,人脸在人类沟通中起核心作用,因为人脸可以强调某个信息,甚至可以传达某个信息。目前的人脸操纵(facial manipulation)方法分为两类:面部表情操纵和面部身份操纵(见图 2)。最著名的面部表情操纵技术之一 Face2Face 来自于 Thies 等人 [48]。它可基于商用硬件,将一个人的面部表情实时迁移至另一个人。后续的研究(如《Synthesizing Obama: learning lip sync from audio》[45])能够基于音频输入序列使人脸动起来。《Bringing portraits to life》[8] 可以编辑图像中的面部表情。
今天跟大家继续说说人脸检测的一些事,我们是否考虑过人脸检测,到底哪些特征是比较关键性的???
成年人的11.11,不只有“衣食住行相关的买买买”,还有“囤课”、“抢课”。 数据显示,2020年,腾讯课堂11.11单日成交额同比增长200%,高峰时期180万人涌入竞相选课。今年以来,全国青年在线学习职业技能热情不减。腾讯课堂延续去年11.11活动热度,联合更多机构加码投入百万补贴,连续15天为用户发放红包,并推出海量的1元秒杀课程等福利活动。11.11活动将从10月29日启动,并持续到11月12日。 值得注意的是,今年11.11活动期间,腾讯课堂还将特别推出全国热学课程榜单、好评课程榜单、薪选好课榜
看人先看脸,不同的人脸往往会给我们留下不同的印象,像蒙娜丽莎圆润的脸颊会让人感受到母性的光辉,而蝙蝠侠面具下坚毅的下巴则透露着浓烈的男子气息。
不论是免费Wi-Fi盗取位置信息,还是儿童智能手表成为窃听工具,都在揭露一个事实:
近日,网易互娱AI Lab在国际计算机与模式识别会议CVPR 2022图像鉴伪挑战赛(IFDC)中一举斩获冠军,分别以高达99.386%和98.928% 的识别准确率包揽初赛和复赛两阶段的第一名,力压国际、国内共674支参赛队伍,在人脸伪造图像的鉴别方面真正秀了一把实力。 1 背景介绍 近年来,深度伪造技术用于合成内容制作已十分普遍,此类技术在带来便利性的同时也带来了隐私和安全的隐患,其中deepfake等人脸图像篡改技术的恶意应用存在极大危险性。为了应对这一挑战,IFDC挑战赛主要聚焦与人脸图像的伪造检测
6月29日,音视频及融合通信技术技术沙龙圆满落幕。本期沙龙特邀请腾讯云技术专家分享关于最新的低延迟技术、全新的商业直播方案等话题,针对腾讯云音视频及融合通信产品的技术全面剖析,为大家带来纯干货的技术分享。下面是孙祥学老师关于AI技术在视频智能识别和分析中的应用,以及实际落地过程中遇到的挑战以及解决办法的分享。
深度学习在图像分类、物体检测、图像分割等计算机视觉问题上都取得了很大的进展,被认为可以提取图像高层语义特征。基于此,衍生出了很多有意思的图像应用。 为了提升本文的可读性,我们先来看几个效果图。 图1.
无论是物理手段,还是生理手段的“变脸”,互联网审美时代里第一批被AI“变脸”的人已经不是天方夜谭。
---- 新智元报道 编辑:LRS 【新智元导读】人脸识别技术最近又有新的破解方式!一位斯坦福的学生使用GAN模型生成了几张自己的图片,轻松攻破两个约会软件,最离谱的是「女扮男装」都识别不出来。 真的有人能模仿你的脸,还绕开了人脸识别系统! 最近斯坦福大学的研究人员在arxiv上发布了一篇论文,虽说是斯坦福CS236G的课程作业,不过论文中提出了一个非常有趣的思路,用对抗生成网络GAN生成一个面部图像来模仿目标人脸,看看人脸识别系统能否正确验证。 因为人脸的关键特征信息都保留了下来,所以论文的结果
雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑
AiTechYun 编辑:xiaoshan.xiang 想象一下,只需要用你的脸对准摄像头,不需要指纹扫描或触摸,就能解锁手机。它只会在没有任何用户干预的情况下自动并且完美地工作。难道不令人感到不可思
本系列是《玩转机器学习教程》一个整理的视频笔记。本章的最后一个小节介绍PCA在人脸识别领域的一个特殊的应用,也就是所谓的特征脸。本小节会介绍什么是特征脸,并通过可视化的方式直观的感受特征脸。
随着小视频越来越流行,兼具趣味与人物个性的人脸特效成为小视频软件的标配,美颜自不必说,现在的人脸特效可谓“千变万化”,人脸年轻化、变欧美范儿、发型改变、各种表情、胖瘦等。
编者注:本文根据山世光在 CNCC 2016 可视媒体计算论坛上所做的报告《深度化的人脸检测与识别技术:进展与问题》编辑整理而来,在未改变原意的基础上略有删减。 山世光,中科院计算所研究员,中科院智能信息处理重点实验室常务副主任。主要从事计算机视觉、模式识别、机器学习等相关研究工作。迄今已发表CCF A类论文50余篇,全部论文被Google Scholar引用9000余次。曾应邀担任过ICCV,ACCV,ICPR,FG等多个国际会议的领域主席(Area Chair)。现任IEEE Trans. on Ima
2015年的时候笔者开始关注GAN,公众号早期的文章中就有GAN的综述,这些年GAN的相关研究也是持续井喷。这一次咱们学术上的研究撇开不讲,这么多年过去了,GAN有哪些最成功的商业化落地领域?
Teaser 本文作者均来自 Pinscreen,即杀马特🧑🏻🎤教授黎颢创办的专注于真实感虚拟角色生成的人工智能公司。文章提出了一种从任意人脸图片,生成 normalized avatar (即中性表情、标准光照下的3D人脸虚拟化身)。 论文:arxiv.org/abs/2106.11423 Method 文章的流程如下图所示,主要包含两个阶段: Inference Stage:输入一张人脸图片,首先使用预训练的人脸识别网络 FaceNet 提取人脸面部特征,然后该面部特征通过 Identity Re
之前看过日本东京的BBT大学使用的「Newme」机器人代替学生参加毕业典礼,就问能不能来点儿阳间的东西?
目前,人工智能技术已经在人脸识别、语音处理、视频处理、自然语言处理等领域得到了突飞猛进的进展。未来人工智能技术将在哪些行业和业务场景中最快得到应用,以及将会向着哪些方向重点发展,成为了行业共同关心的问题。
今天解读的是一篇已被ECCV 2020接收的论文,在这篇论文中,来自哈工大的作者们针对之前方法忽略对侧脸-正脸图像对之间光照情况不一致的考虑,引入了一个光照保留损失,实现了图像中光照信息和人脸身份信息的特征解藕,同时使用光流估计在特征层面得到了侧脸-正脸之间的特征对应关系,作为一个强有力的正向化监督信号,进而生成了更加逼真的正面人脸,同时也保留了更多的细节信息,实验结果表明,本文方法达到了SOTA效果。
特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在之前的文章中已经讲过了。直接上特征脸方法的步骤: 步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所示哦。每张图像可以转换成一个N维的向量(是的,没错,一个像素一个像素的排成一行就好了,至于是横着还是竖着获取原图像的像素,随你自己,只要前后统一就可以),然后把这M个向量放到一个集合S里,如下式所示。
领取专属 10元无门槛券
手把手带您无忧上云