扩展问题是今天碰到的字节笔试的第三题,给定一个长度为n的环状数组,按动一次开关可以改变自己和左右的状态(0->1/1->0)。初始全部为0,问如何得到1。 这个问题比较类似POJ1830,相当于自动加上了开关变化的限制。
高斯消元法可以用来找出一个可逆矩阵的逆矩阵。设A 为一个N * N的矩阵,其逆矩阵可被两个分块矩阵表示出来。将一个N * N单位矩阵 放在A 的右手边,形成一个N * 2N的分块矩阵B = [A,I] 。经过高斯消元法的计算程序后,矩阵B 的左手边会变成一个单位矩阵I ,而逆矩阵A ^(-1) 会出现在B 的右手边。假如高斯消元法不能将A 化为三角形的格式,那就代表A 是一个不可逆的矩阵。应用上,高斯消元法极少被用来求出逆矩阵。高斯消元法通常只为线性方程组求解。
众所周知,高斯消元是线性代数中重要的一课。通过矩阵来解线性方程组。高斯消元最大的用途就是用来解多元一次方程组。
高斯消元法的基本原理是通过一系列行变换将线性方程组的增广矩阵转化为简化行阶梯形式,从而得到方程组的解。其核心思想是利用矩阵的行变换操作,逐步消除未知数的系数,使得方程组的求解变得更加简单。
作者:龚敏敏
在中国不知所以的《线性代数》教材的目录排版下,当前大多数本土毕业生均能熟练使用公式计算行列式或求解线性方程组,却丝毫不能体会线性代数真正内涵的精髓所在。包括我在内,在学习机器学习那满篇的矩阵表示更是让人头痛欲裂,这让我事实上感受到了线性代数才是机器学习中最重要的数学工具,因此不得不静下心来按照网易名校公开课—“MIT线性代数”重学一遍,受到的启发超乎想象,线性代数新世界的大门似乎也对我缓缓打开,遂有了这两篇学习笔记,供自己或有兴趣的小伙伴后续参考。
比方说在二维平面中,这里有三组二维向量,每组都有两个向量,那么每组向量的面积就可以表示它们的不同。当然这里说面积是针对二维平面来说的,在三维空间中,就是体积;在更高维度中,可能就是一个体,但这个体比较抽象
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。 高斯消元法的原理是: 若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程
对方程组中某个方程进行时的那个的数乘和加减,将某一未知系数变为零,来削弱未知数个数
高斯消元(Gaussian Elimination)是一种用于解线性方程组的算法,通过逐步的行变换来将方程组转化为简化的行阶梯形式,从而求解方程组的解。
前者的复杂度是 O(n!) 级别的,在计算约 12 阶的矩阵时就会需要超过 1s 的时间,而计算 1000 \times 1000 的矩阵需要进行约:
本文详细论述了四个特征点检测算法:Harris, SIFT,SURF以及ORB的思路步骤以及特点,分析了它们的局限性,并对几个重要问题进行了探讨。
(a_{i,1} - a_{i,1} \times 1)x_1 + (a_{i,2} - a_{i,1} \times \dfrac{a_{1,2}}{a_{1,1}})x_2 + \ldots = b_i - a_{i,1} \times \dfrac{b_1}{a_{1,1}}
在一个无向图中,小Z以1为起点,每次以相等的概率选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z走到N(即终点),结束了这次游走,总得分为游走时经过的每一条边的编号之和。现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。 输入保证: 1. 30%的数据满足N<=10100%的数据满足2<=N<=500
\(A^T\)表示矩阵的转置,即\(a_{ij}^{T} = a_{ji}\),相当于把矩阵沿主对角线翻转
线性方程组,是任何标准大学数学教材讲解矩阵是都要用到的,并用它引出矩阵概念。之所以如此,可能有两个原因:一是因为我们在初中的时候就已经学习过线性方程组,对它不陌生,正所谓“温故而知新”;二是矩阵的确是为了求解线性方程组而被提出的。所以,此处也不免俗,依然从线性方程组开始,引出矩阵。
这篇文章写的算法是高斯消元,是数值计算里面基本且有效的算法之一:是求解线性方程组的算法。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/129049.html原文链接:https://javaforall.cn
PCA,即主成分分析,是一种数据降维的方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低数据维数,从而实现提升数据处理速度的目的。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
如果你学习SIFI得目的是为了做检索,也许 OpenSSE 更适合你,欢迎使用。
高斯消去法解方程组较为简单,然而如果在消去过程中出现0主元或者是主元非常小的话,消去法将失败或者数值不稳定。这时可以采用选主元的方法,进行处理。下面给出列主元消去法的算法: 用下面的方程组验证程序:
当 a\times d-b\times c=0 时 A 没有定义,A^{-1}不存在,则 A 是奇异矩阵。
正交匹配追踪(OMP)算法的MATLAB函数代码并给出单次测试例程代码 测量数M与重构成功概率关系曲线绘制例程代码 信号稀疏度K与重构成功概率关系曲线绘制例程代码 参考来源:http://blog.c
算法实现基本与高斯消元法求解线性方程组相同,同样还是三层循环进行消元和回代,只是增广矩阵的规模由n×n+1变成了n×2n,因此算法复杂度仍然为O(n3)。
当线性方程组的规模比较大时,采用高斯消元法需要太多时间。这时就要采用迭代法求解方程组了。高斯消元法是一个O(n^3)的浮点运算的有限序列,在经过有限步计算之后理论上得到的是精确解(无舍入误差时)。而迭代法在经过有限步迭代之后一般不产生精确解,迭代法在计算过程中逐渐减小误差,当误差小于容许值时停止迭代计算。方程组的系数矩阵是严格对角占优矩阵时,迭代总是收敛的。
华为公司今年6.30开源了openGauss数据库,openGauss数据库内核基于postgresql9.2.4演进而来,pg11.3版本数据库中共有290个数据库参数,而openGauss目前有515个数据库参数,每个参数对应一个数据库内核功能,所以可以看到华为公司对pg的内核还是做了非常大的改造和增强。
最近,copula 在仿真模型中变得流行起来。Copulas 是描述变量之间依赖关系的函数,并提供了一种创建分布以对相关多元数据建模的方法。使用 copula,数据分析师可以通过指定边缘单变量分布并选择特定的 copula 来提供变量之间的相关结构来构建多变量分布。双变量分布以及更高维度的分布都是可能的。
最近我们被客户要求撰写关于COPULA模型蒙特卡洛的研究报告,包括一些图形和统计输出。
最近,copula 在仿真模型中变得流行起来。Copulas 是描述变量之间依赖关系的函数,并提供了一种创建分布以对相关多元数据建模的方法 ( 点击文末“阅读原文”获取完整代码数据******** ) 。
最近,copula 在仿真模型中变得流行起来。Copulas 是描述变量之间依赖关系的函数,并提供了一种创建分布以对相关多元数据建模的方法
1 问题 之前我们考虑的训练数据中样例 的个数m都远远大于其特征个数n,这样不管是进行回归、聚类等都没有太大的问题。然而当训练样例个数m太小,甚至m<<n的时候,使用梯度下降法进行回归时,如果初
- 由于本文代码基于OpenCV基础库,所以题目中添加了“OpenCV实现”字样。
https://www.kaggle.com/greenarrow2018/santander-value-prediction-challenge
首先,线性代数和微积分都是必要的,但是初学者容易割裂地看待它们以及机器学习,不清楚哪些线性代数&微积分的知识才是掌握机器学习数学推导的关键。一样,我也走过并继续在走很多弯路,就说说我的感受吧,大家一起探讨探讨。 1 理解矩阵变换 矩阵变换简单的说就是x->Ax,A矩阵把原空间上的向量x映射到了Ax的位置,看似简单实在是奥妙无穷。 1.1 A可以是由一组单位正交基组成,那么该矩阵变换就是基变换,简单理解就是旋转坐标轴的变换,PCA就是找了一组特殊位置的单位正交基,本质上就是基变换。 1.2 A可以是某些矩阵,
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/79205296
下面的这个例子中选择了一个ksize=3×3的滑动窗口(或称滤波器模板、kernel),如黄色部分所示。用这个ksize=3×3的窗口作用于原始图像上的每一个像素,如下图的绿色部分所示,被这个窗口覆盖的9个像素点都参与计算,这样在该像素点上就会得到一个新的像素值,当窗口沿着图像逐个像素进行计算,就会得到一幅新的图像。
项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步
X.*Y运算结果为两个矩阵的相应元素相乘,得到的结果与X和Y同维,此时X和Y也必须有相同的维数,除非其中一个为1×1矩阵,此时运算法则与X*Y相同。
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊。 小Hi:走走走,赶紧去看
对于任意方阵,其行列式(determinant)为一个标量,可以看作线性变换对体积的影响或扩大率,行列式的正负号对应图形的镜像翻转。2阶方阵的行列式表示每列向量围成的平行四边形的面积,3阶方阵的行列式表示每列向量围成的平行六面积的体积。在多重积分的换元法中,行列式起到了关键作用。在研究概率密度函数根据随机变量的变化而产生的变化时,也要依靠行列式进行计算,例如空间的延申会导致密度的下降。另外,行列式还可以用来检测是否产生了退化,表示压缩扁平化(把多个点映射到同一个点)的矩阵的行列式为0,行列式为0的矩阵表示的必然是压缩扁平化,这样的矩阵肯定不存在逆矩阵。
计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。
三维模型重建的流程: 三维点云获取——几何结构恢复——场景绘制 三维点云获取: 1.激光雷达 2.微软Kinect 有效距离比较短 3.单目多视角 :几乎很难实时 4.双目立体视觉
「总结自经典机器学习教材《Pattern Recognition and Machine Learning》以及김동국教授的人工神经网络纯理论课程。在此感谢作者及教授的辛苦教学。本篇内容很多东西没有很明确地说明,仅限学习使用」
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 这几天推送了关于机器学习数据预处理之降维算法,介绍了通过降维提取数据的主成分的背景,特征值分解法,奇异值分解法的相关原理。 现在我们再回顾下这些问题,首先,提取主成分的必要性,从数字信号的角度分析,主成分时方差较大,称为信号,而噪声是方差较小的;极限讲,如果100个样本点都汇集成一个点,也就是方差为0,那么不就相当于我们手上有1个
ICA是用来分离混合源的技术。所以我们准备先混合,再分离,我们定义两个独立的源,上面的称为A,下面的称为B,代码如下:
领取专属 10元无门槛券
手把手带您无忧上云