首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    矩阵行列式、伴随矩阵、逆矩阵计算方法与Python实现

    对于任意方阵,其行列式(determinant)为一个标量,可以看作线性变换对体积的影响或扩大率,行列式的正负号对应图形的镜像翻转。2阶方阵的行列式表示每列向量围成的平行四边形的面积,3阶方阵的行列式表示每列向量围成的平行六面积的体积。在多重积分的换元法中,行列式起到了关键作用。在研究概率密度函数根据随机变量的变化而产生的变化时,也要依靠行列式进行计算,例如空间的延申会导致密度的下降。另外,行列式还可以用来检测是否产生了退化,表示压缩扁平化(把多个点映射到同一个点)的矩阵的行列式为0,行列式为0的矩阵表示的必然是压缩扁平化,这样的矩阵肯定不存在逆矩阵。

    01

    SIFT特征点提取「建议收藏」

    计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

    02
    领券