验证码,全称为“Completely Automated Public Turing test to tell Computers and Humans Apart”,即全自动区分计算机和人类的图灵测试,Captcha。早在上个世纪90年代,为了防止恶意的网络机器人行为,像邮件轰炸、暴力破解密码等,验证码应运而生。
为什么要写一个这个东西呢?虽然现在好多大网站都不用图片验证码了,但是仍然有一部分陈旧的web系统用着一些简单的图片验证码。当遇到带有验证码,而验证码的形式又非常简单的时候,手工测试起来可能太麻烦。我所知道的现有工具中有“PKAV HTTP Fuzzer”可以识别验证码,并做一些fuzz。但是,这款工具本身不提供,自带的识别引擎的训练工具。并且,软件所支持的次时代和和亦思验证码识别系统都是收费的,没有找到干净好用的破解版。因此,萌发了这样一个念头。先给各位放一张成品图片吧!
1 图像采集:就直接通过HTTP抓HTML,然后分析出图片的url,然后下载保存就可以了
详细说明:1个简单的网页图片验证码的示例程序,基本上现有的数字和字母都可以识别。-a simple web verify code sample project with number and alphabet recognition.
渗透测试的各位高手们,是不是还在为找不到一个好帮手而郁闷呢?别郁闷了,我来帮你!PKAV HTTP Fuzzer绝对是一你一用就会爱上的好帮手! 但是我们开发这个工具是有使用条件的哦,条件如下: ~$1.本工具运行需要安装.net framework 4.0或以上版本。 ~$2.本工具仅用于安全测试。非正当使用造成的法律纠纷,与我们无关。 ~$3.本工具免费下载和使用,不存在破解版本和收费版本,不存在后门或病毒,有可能被杀毒软件误杀 ~$4.如在使用中发现bug,或您有好的意见或建议,请在PKAV官网
OCR(Optical Character Recognition,光学字符识别)是指使用扫描仪或数码相机对文本资料进行扫描成图像文件,然后对图像文件进行分析处理,自动识别获取文字信息及版面信息的软件。一般情况下,对于字符型验证码的识别流程如下:主要过程可以分解为五个步骤:图片清理,字符切分,字符识别,恢复版面、后处理文字几个步骤。通过本章节学习联系搭建OCR环境,使用Tesseract平台对验证码进行识别。
如果部署在服务器端就需要自己去搭建配置网络环境并编写调用接口,这是一个极其繁琐耗时的过程。
验证码分析:图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因此识别改验证码难度较大。
此脚本只是为了,在抢课时,由于打不开登录页面,需要不停的手动刷新,此脚本代替手动刷新,一直刷到登陆页面出来为止,在刷的时候可以愉快地玩手机
近些年来人工智能迅速发展,尤其是在深度学习神经网络这一块生态尤为繁荣,各种算法和模型层出不穷。
当我们正讨论如何用AI推动产业升级、改变未来生活时,不法分子也在研究AI技术,并通过各种手段非法牟利。近日,腾讯守护者计划安全团队协助警方打掉市面上最大打码平台“快啊答题”,挖掘出一条从撞库盗号、破解验证码到贩卖公民信息、实施网络诈骗的全链条黑产。而在识别验证码这一关键环节,黑产竟已用上AI人工智能技术。该团伙运用AI技术训练机器,极大提升了单位时间内识别验证码的数量,2017年一季度打码量达到259亿次,且识别验证码的精准度超过80%。借此案件,我们也深入研究AI打码平台黑产领域,对其犯罪模式进行剖析。
验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。
本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架。它封装了非常通用的校验、训练、验证、识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力。
这是一个比较棘手的问题,多年来,这个问题的解决方案一直就是“验证码”,就是看看你能够能成功识别一系列机器无法识别的扭曲字符。这类安全验证工具被称为“CAPTCHA”(即“全自动区分机器和人类公共图灵测试”)。
验证码识别是搞爬虫实现自动化脚本避不开的一个问题。通常验证码识别程序要么部署在本地,要么部署在服务器端。如果部署在服务器端就需要自己去搭建配置网络环境并编写调用接口,这是一个极其繁琐耗时的过程。 但是现在我们通过腾讯云云函数 SCF,就可以快速将本地的验证码识别程序发布上线,极大地提高了开发效率。 效果展示 一种比较简单的验证码 识别扭曲变形的验证码 可以看到,识别效果还是蛮好的,甚至超过了肉眼识别率。 操作步骤 传统的验证码识别流程是 图像预处理(灰化,去噪,切割,二值化,去干扰线等) 验证码字
之前有个爬虫需求,但每次请求都需要进行验证码识别,故需要ocr识别,推荐一个Python免费的验证码识别-ddddocr(谐音带带弟弟OCR)
今天给大家分享的实战项目是常用验证码标注&识别,从想法诞生到实现思路,再到编码实战的整体过程,这个过程我前后整理了上万字,计划分章节来发布。言归正传,一起来看看今天的内容吧!今天这篇内容主要讲解这篇文章的创作灵感、需求分析和实现思路。
其实就几个步骤: 1:用程序先把所有验证码(已知的,单个的)的灰度值放入一个数组 2:分割未知验证码,把未知验证码的一个一个数字或字母分割出来 3:分别取分割验证码的 灰度值 4:将分割验证码的灰度值与数组中的灰度值进行匹配,匹配程度最大的,即可能就是该码
暴力破解漏洞的产生是由于服务器端没有做限制,导致攻击者可以通过暴力的手段破解所需信息,如用户名、密码、短信验证码等。暴力破解的关键在于字典的大小及字典是否具有针对性,如登录时,需要输入4位数字的短信验证码,那么暴力破解的范围就是0000~9999。
captcha-killer要解决的问题是让burp能用上各种验证码识别技术!插件当前针对的图片类型验证码,其他类型当前不支持。captcha-killer本身无法识别验证码,它专注于对各种验证码识别接口的调用。
当时采用的是pillow+pytesseract,优点是免费,较为易用。但其识别精度一般,若想要更高要求的验证码识别,初学者就只能去选择使用百度API接口了。
导语:国际顶级会议WWW 2020将于4月20日至24日举行。始于1994年的WWW会议,主要讨论有关Web的发展,其相关技术的标准化以及这些技术对社会和文化的影响,每年有大批的学者、研究人员、技术专家、政策制定者等参与。以下是蚂蚁金服的资深技术专家对入选论文《A Generic Solver Combining Unsupervised Learning and Representation Learning for Breaking Text-Based Captchas》做出的深度解读。
今天在苹果商店下了一个软件,用了一个免费的监测软件Stream发现没有防抓检测,游戏信息直接就显示出来了,在刷怪和进入个人竞技有点不方便:例如
2Captcha是一个自动验证码识别服务,主要用于解决各种互联网服务中的验证码问题。在许多网站注册账户或进行敏感操作时,为了验证用户是真实的而不是自动化程序,会出现验证码。用户必须正确输入验证码,才能继续使用网站的功能。该框架的目标是帮助客户自动化解决验证码问题。客户可以通过付费将需要解决的验证码发送给2Captcha,然后由2Captcha将这些验证码分发给专业的打码员进行输入。这些打码员是人工操作,而不是机器,他们能够快速有效地识别验证码,确保客户能够顺利通过验证码验证,继续使用所需的功能。
如果你是一个数据挖掘爱好者,那么验证码是你避免不过去的一个天坑,和各种验证码斗争,必然是你成长的一条道路,接下来的几篇文章,我会尽量的找到各种验证码,并且去尝试解决掉它,中间有些技术甚至我都没有见过,来吧,一起Coding吧
毕业设计做了一个简单的研究下验证码识别的问题,并没有深入的研究,设计图形图像的东西,水很深,神经网络,机器学习,都很难。这次只是在传统的方式下分析了一次。 今年工作之后再也没有整理过,前几天一个家伙要这个demo看下,我把一堆东西收集,打包给他了,他闲太乱了,我就整理记录下。这也是大学最后的一次作业,里面有很多记忆和怀念。 这个demo的初衷不是去识别验证码,是把验证的图像处理方式用到其他方面,车票,票据等。 这里最后做了一个发票编号识别的的案例: 地址:http://v.youku.com/v_show
寻找可用的IP代理:我们可以在互联网上寻找免费或付费的IP代理服务提供商,选择合适的代理服务器地址和端口号。
相信大家在日常上网的时候都会遇到“千奇百怪”的验证码,而在种类繁多的验证码家族中,文本验证码是使用最广泛的一种,也是我们遇到最多的一种验证码方案。近年来,随着深度学习技术的突破性发展,文本验证码的安全性也受到了挑战。通过收集大量目标网站的验证码,并训练一个深度网络模型,就可以实现对目标网站验证码的攻击。为了抵抗基于深度学习模型的攻击,一方面,各大网站都采用诸如字符扭曲、粘连、旋转,背景混淆,空心字体等多种复杂变换方案来提高文本验证码的安全性;另一方面,有些网站采用了诸如前端代码混淆、关键代码加密等反分析方式来防止验证码被恶意收集和自动爬取,进而通过增大攻击的成本来降低验证码被攻击的可能性。然而,上述两种方式真的能够增强验证码的安全性吗?
上篇文章我们讲解了验证码识别的最佳解决方案,今天我们把验证码识别的能力,服务化,对外输入一个OCR接口。
来源:http://www.hi-roy.com/2017/09/19/Python验证码识别
tessercat下载地址:https://digi.bib.uni-mannheim.de/tesseract/ //请依据自己的操作系统下载exe文件安装
验证码通常用于网站的登录,以区分是否是人类的行为还是机器的行为。启用验证码是反爬虫、反黑客的常用手段之一。然而,随着技术的不断进步,特别是machine learning的发展,普通的验证码识别也不是很复杂的事情。
人机验证服务是突破传统验证码的人机识别产品,通过对用户的行为数据、设备特征与网络数据构建多维度数据分析,可以对风险设备使用、模拟行为、暴力重放等攻击进行综合判决,解决企业账号、活动、交易等关键业务环节存在的欺诈威胁问题。早期的验证码通常是一串非常简单的形状标准的数字,经过长期发展,形式越来越多样化,现在简单的数字英文验证码已经很容易被机器读取破解,复杂的验证码设计得愈发反人类。不过得益于机器学习,尤其是深度学习的进步,很多学者和技术大牛都这方面有了一些研究成果,本文将对已有的一些人机验证绕过技术进行总结。
前短时间夜幕团队的哲哥带来一个强大的库,一个验证码识别库 ddddocr,小编第一时间看到后就收藏了,最近有空就找了一个例子来试试。
地址:http://v.youku.com/v_show/id_XMTI1MzUxNDY3Ng==.html
看到了一个好玩的平台————网络安全实验室,看起来对新手还是有帮助的,如果你有初步编程基础也可以看看脚本关哦!
Python爬虫之验证码识别 #识别车牌号 from aip import AipOcr import re APP_ID = '15469265' API_KEY = 'rAGFtOChXtO7mnRPiwXg1Frf' SECRET_KEY = 'Ailvoijh4X7lQIAoZ58UsGPlaDCmLIt7' client = AipOcr(APP_ID, API_KEY, SECRET_KEY) """ 读取图片 """ def get_file_content(filePath):
谷歌的开源深度学习工具 --py 简介 验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验证码进行整体识别。通过本文的学习,大家可以学到几点:1.captcha库生成验证码;2.如何将验证码识别问题转化为分类问题;3.可以训练自己的验证码识别模型。 安装 captcha 库 sudo pip install captcha 生成验证码训练数据 所有的模型训练,数据是王道,本文采用 captcha 库生成验证码,
乌鸦安全的技术文章仅供参考,此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失,均由使用者本人负责。
图片验证码采用加干扰线、字符粘连、字符扭曲方式来增强识别难度,对于以上类型的验证码均不支持。 支持的弱验证码如下:
本文介绍了自动化测试如何解决验证码的问题。首先介绍了验证码的作用,然后列举了三种处理验证码的方法,分别是去掉验证码、设置万能码和验证码识别技术。最后还介绍了一种记录cookie的方法,可以用于UI自动化测试。
本次比赛是全国高校计算机能力挑战赛中的人工智能赛道里的验证码识别,该比赛需要识别26(大写)+26(小写)+数字(10)= 62个字符,随机组成的四位验证码图片。
过年期间我曾经写过一篇文章《一次简单的验证码识别以及思考》, 目前已经对该功能做了一些优化,可以支持几种类型的验证码识别。其核心思想仍然是上一篇文章所提到的,使用tensorflow来训练标注过的验证码。目前,多种类型的验证码训练完之后可以放到一个模型中。未来,有新增的验证码类型通过训练之后也可以整合到这个模型中。
最近约车真是越来越难了,网上约车经常车位刚放出来便已空空如也。突然回想起之前学车时教练反复提到的约车软件,去淘宝上一查:我去,卖出去一千多份了!还能约到车那就是有鬼了……此刻我深深怀疑这个软件是他们自家开发的,贵圈水真深。然而作为一名程序猿的尊严是不允许我去买这软件的……于是花了一天捣鼓出来一个极其简陋的约车系统,虽然因为官方网站对这方面的限制很多,效果并不是很好,不过试用了一下淘宝的爆款约车软件基本确定原理相同,那么就满足了吧……(挽尊可矣)
上一篇基础篇: https://blog.csdn.net/weixin_43582101/article/details/90082023
各位在企业中做Web漏洞扫描或者渗透测试的朋友,可能会经常遇到需要对图形验证码进行程序识别的需求。很多时候验证码明明很简单(对于非互联网企业,或者企业内网中的应用来说特别如此),但因为没有趁手的识别库,也只能苦哈哈地进行人肉识别,或者无奈地放弃任务。在这里,我分享一下自己使用Python和开源的tesseract OCR引擎做验证码识别的经验,并提供相关的源代码和示例供大家借鉴。 一、关于图形验证码识别与tesseractOCR 尽管多数图型验证码只有区区几个数字或字母,但你可能听说了,在进行机器识别的过程
看到了一个好玩的平台————网络安全实验室,看起来对新手还是有帮助的,如果你有编程基础也可以看看脚本关哦!
短信验证码只做了手工测试,当时想的是短信验证码需要一台手机,并且能够发送验证码,由于当时没有做移动端的任何测试,考虑到成本问题只能在自动化测试是放弃这种登录验证方式,只保证功能在手工测试时正常通过;
领取专属 10元无门槛券
手把手带您无忧上云