首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

回归-线性回归算法(房价预测项目)

文章目录 简介 损失函数 优化算法 正规方程 梯度下降 项目实战 简介 ---- 线性回归(Linear Regression)是回归任务中最常见的算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名...,从而可以根据已知数据预测未来数据,如房价预测、PM2.5预测等。...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色的回归方程,表示自变量和因变量关系,从而可以输入新的自变量,得到预测值(因变量)。...预测函数定义为: h(w)=w_1x_1+w_2x_2+···+w_dx_d+b 向量形式为: 图片 图片 尽可能贴近目标函数。

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    回归预测之入门

    回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归回归还有很多的变种,如locally...weighted回归,logistic回归,等等,这个将在后面去讲。...绿色的点就是我们想要预测的点。 首先给出一些概念和常用的符号,在不同的机器学习书籍中可能有一定的差别。...就如同上面的线性回归函数。 一个模型。就如同上面的线性回归函数。 ?...总结与预告: 本文中的内容主要取自stanford的课程第二集,希望我把意思表达清楚了:)本系列的下一篇文章也将会取自stanford课程的第三集,下一次将会深入的讲讲回归、logistic回归

    69850

    秒懂“线性回归预测

    线性回归是机器学习中的概念,线性回归预测算法一般用以解决“使用已知样本对未知公式参数的估计”类问题。...答:很多应用场景不能够使用线性回归模型来进行预测,例如,月份和平均气温,平均气温并不随着月份的增长呈线性增长或下降的趋势。...答:最小二乘法适用于任意多维度的线性回归参数求解,它可求解出一组最优a,b,c解,使得对于样本集set中的每一个样本data,用Y=f(X1,X2,X3,…)来预测样本,预测值与实际值的方差最小。...画外音:方差是我们常见的估值函数(cost function),用来评估回归出来的预测函数效果。 什么是梯度下降法?...五、总结 逻辑回归是线性回归的一种,线性回归回归的一种 线性回归可以用在预测或分类,多维度(feature)线性问题求解上 可以用最小二乘法,梯度下降法求解线性预测函数的系数 梯度下降法的核心步骤是:

    1.1K20

    基于回归模型的销售预测

    基于回归模型的销售预测 小P:小H,有没有什么好的办法预测下未来的销售额啊 小H:很多啊,简单的用统计中的一元/多元回归就好了,如果线性不明显,可以用机器学习训练预测 数据探索 导入相关库 # 导入库...= SVR(gamma='scale') # 支持向量机回归 model_gbr = GradientBoostingRegressor(random_state=0) # 梯度增强回归 model_list...model_gbr] pre_y_list = [model.fit(X_train, y_train).predict(X_test) for model in model_list] # 各个回归模型预测的...k', label='true y') # 画出原始值的曲线 plt.plot(np.arange(len(y_test)), pre_y, 'g--', label='XGBR') # 画出每条预测结果线...,而且不难发现XGBoost在回归预测中也具有较好的表现,因此在日常业务中,碰到挖掘任务可首选XGBoost~ 共勉~

    61620

    深度学习回归案例:房价预测

    作者:Peter 编辑:Peter 大家好,这里是机器学习杂货店 Machine Learning Grocery~ 本文的案例讲解的是机器学习中一个重要问题:回归问题,它预测的是一个连续值而不是离散的标签...注意:逻辑回归不是回归算法,而是分类算法 [e6c9d24egy1h0u96czaikj20iw07awer.jpg] <!...) 损失函数mse-均方误差,(y_predict- y_true)^2;回归问题的常用损失函数 监控指标mae-平均绝对误差,|y_predict- y_true|;预测值和目标值之差的绝对值 K折交叉验证...] - 0s 3ms/step - loss: 372.9089 - mae: 18.3248 In 41: test_mae_score Out41: 18.324810028076172 可以看到预测的房价和真实的房价的相差约为...1.8万美元 总结 回归问题中,损失函数使用的是均方误差MSE 回归问题中,评价指标使用的是平均绝对误差MAE 如果数据的特征具有不同的取值范围,需要进行数据的归一化,进行数据缩放 当数据少的时候,使用

    2K00

    回归模型的变量筛选与预测

    我眼中的回归变量筛选 变量筛选是回归建模过程关键的一步,由于变量间的相关性,必然会导致不同的筛选方法得到不同的模型。...我眼中的回归预测 回归模型的预测功能指根据自变量X的取值去 估计或预测 因变量Y的取值,一般,预测或估计的类型主要有两种,即: 1、点估计 Y的平均值的点估计 Y的个别值的点估计 2、区间估计...Y的平均值的置信区间估计 Y的个别值的预测区间估计 需要注意,用回归模型进行预测时,模型中自变量的取值离均值越远则预测的结果就会越不可靠。...但是有些时候无法保证预测的X值一定就在建模样本X的值域范围内,这种情况即需要用到外推预测forecast,回归模型无法实现外推预测,一般外推预测forecast会存在于时间序列中。...如下为实现线性回归的SAS代码,其中加入了p参数以实现对原始数据的预测: ? ? 什么是点估计与区间估计 点估计是用数据函数给出未知参数估计量,一般这个估计函数被称为估计统计量。

    2.1K10

    R使用LASSO回归预测股票收益

    你真的可以从虚假的预测指标中捕获这个特定的变量吗? 2.使用LASSO LASSO定义。LASSO是一种惩罚回归技术,在Tibshirani(1996)中引入。...我估计了一个OLS回归真正的预测因子是右侧变量。显然,在现实世界中,你不知道真正的预测变量是什么,但是这个规范给出了你可以达到的最佳拟合的估计。...在将每个模型拟合到先前的数据之后,然后我在st期间进行样本外预测预测回归。然后,我通过分析一系列预测回归分析调整后的统计数据,检查这些预测与第一个资产的实现回报的紧密程度。...例如,我将LASSO的回报预测用于估算下面的回归 ? ? 4.调整参数 惩罚参数选择。使LASSO拟合数据涉及选择惩罚参数。我这样做是通过选择在数据的第一个时段期间具有最高样本外预测的惩罚参数。...这就是为什么上面的预测回归仅使用从而不是使用数据开始的原因。下图显示了模拟中惩罚参数选择的分布。 ? 预测数量。

    1.1K10

    机器学习-线性回归算法(房价预测项目)

    简介 线性回归(Linear Regression)是回归任务中最常见的算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名,从而可以根据已知数据预测未来数据,如房价预测、PM2.5...预测等。...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色的回归方程,表示自变量和因变量关系,从而可以输入新的自变量,得到预测值(因变量)。...使用误差平方和SSE来表示损失,即预测值和真实值差的平方求和,该方法也称为最小二乘法,二乘即平方的意思,求最小的损失。

    84330

    机器学习-线性回归预测房价模型demo

    这篇介绍的是我在做房价预测模型时的python代码,房价预测在机器学习入门中已经是个经典的题目了,但我发现目前网上还没有能够很好地做一个demo出来,使得入门者不能很快的找到“入口”在哪,所以在此介绍我是如何做的预测房价模型的题目...1.题目: 从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。 数据下载请点击:下载,密码:mfqy。...5.使用测试数据进行目标函数预测输出,观察结果是否符合预期。或者通过画出对比函数进行结果线条对比。 3.模型选择 这里我们选择多元线性回归模型。公式如下:选择多元线性回归模型。 ?...如果想要预测test文件里的数据,那就把test文件里的数据进行读取,并且进行特征缩放,调用: LR_reg.predict(test) 就可以得到预测结果,并进行输出操作。...但要理解线性回归的概念性东西还是要多看资料。

    1.8K20

    机器学习:基于逻辑回归的分类预测

    许多预测患者得病概率的模型使用逻辑回归,如TRISS伤情分级系统。根据患者特征预测糖尿病、心脏病风险也用逻辑回归。 二是工业应用。...1.3 逻辑回归的基本原理 Logistic函数(或称为Sigmoid函数),函数形式为: 对于线性边界的情况,边界形式如下: 其中,训练数据为向量 最佳参数 构造预测函数为: 函数h(x)的值有特殊的含义...class:\n',y_label_new1_predict) print('The New point 2 predict class:\n',y_label_new2_predict) ## 由于逻辑回归模型是概率预测模型...## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率 train_predict_proba = clf.predict_proba...0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

    40950
    领券