在B+树上, 主索引的叶节点data域记录着完整的数据记录, 这种索引方式被称为聚簇索引. 因为无法把数据行存放在两个不同的地方, 所以一个表只能有一个聚簇索引.
表的索引与字典中的索引非常相似。它可以极大地提高查询的速度。对一个较大的表来说,通过加索引,一个通常要花费几个小时来完成的查询只要几分钟就可以完成。(对于包含索引的数据库,SQL Sever需要一个可观的额外空间。例如,要建立一个聚簇索引,需要大约1.2倍于数据大小的空间。速度是需要付出代价的。) 索引有两种类型:聚簇索引和非聚簇索引。 在聚簇索引中,索引树的叶级页包含实际的数据:记录的索引顺序与物理顺序相同。 在非聚簇索引中,叶级页指向表中的记录:记录的物理顺序与逻辑顺序没有必然的联系。 聚簇索
http://www.cnblogs.com/wuxiaoqian726/articles/2016095.html
在 MySQL 默认引擎 InnoDB 中,索引大致可分为两类:聚簇索引和非聚簇索引,它们的区别也是常见的面试题,所以我们今天就来盘它们。
英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/
MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,B+Tree索引,哈希索引,全文索引等等,
那么怎样在I/O 块大小 的限制下快速利用二分查找找到目标值呢?我们得引入新的数据结构,B+树正好可以解决上述I/O块大小的限制,解决限制不是说增大了限制范围,而是我们在此限制上改变了数据的存储结构,即在同等限制条件下,快速检索到目标数据,如下是B+树的原理讲解:
聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
在数据库系统中,索引是提高数据查询效率的重要工具。针对MySQL数据库,索引优化是提高查询性能的关键。本文将深入探讨MySQL索引的优化策略,介绍常见的索引失效场景,并详细解释聚簇索引与非聚簇索引的区别。
看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?
聚簇索引不是一种单独的索引类型,而是一种数据存储方式。将数据存储与索引放到了一块,找到索引也就找到了数据。
澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值。
myisam引擎是5.1版本之前的默认引擎,⽀持全⽂检索、压缩、空间函数等,但是不⽀持事务和⾏级锁,所以⼀般⽤于有⼤量查询少量插⼊的场景来使⽤,⽽且myisam不⽀持外键,并且索引和数据是分开存储的。
聚簇索引(Clustered Index)和非聚簇索引(Non-clustered Index)是数据库中的两种索引类型,它们在组织和存储数据时有不同的方式。
在mysql数据库中,myisam引擎和innodb引擎使用的索引类型不同,myisam对应的是非聚簇索引,而innodb对应的是聚簇索引。聚簇索引也叫复合索引、聚集索引等等。
本节课主要关注InnoDB,但是这里讨论的原理对于任何支持聚簇索引的存储引擎都是适用的。
聚簇索引规定了一个数据表的排序方式,一个数据表只能有一个聚簇索引,通常使用聚簇索引的是数据表的主键。 聚簇索引和数据行是存放在一起的,所以使用聚簇索引的查询效率很高。同时由于聚簇索引已经进行了排序,所以范围查找的效率很高。但是聚簇索引插入删除的代价可能会比较高,可能会引起页分裂的情况(B+Tree 的数据结构特性,因为 B+Tree 的一个节点的度通常是数据页的大小,向一个满度的节点插入数据,就会导致分页)。 非聚簇索引又称二级索引,可以有多个,它也是一个 B+Tree 结构,它的叶节点指向的是行的 key 字段和主键值。所以通过非聚簇索引搜索时,首先通过非聚簇索引获取到行的主键值(先获取到数据表的聚簇索引值),然后根据主键值获取到数据行信息,相当于比聚簇索引多了一倍的 IO。 聚簇索引和非聚簇索引不是矛盾关系。
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。 不同的存储引擎有着不同的实现方式,对于 InnoDB,聚簇索引意味着将 B-Tree 索引与数据行存储在同一个结构中。 “聚簇”指的就是数据行和相邻的键值紧凑的存储在一起。 因为每一个行都只能存储在唯一的地方,所以一个表只能有一个聚簇索引。
在数据库中,索引可以理解为是一种单独的,物理的对数据库表中的一列或者多列的值进行排序的一种存储结构。它的作用是能让我们快速检索到想要的数据,好比字典的目录,通过目录的页码能快速找到我们想查找的内容。
《学习InnoDB:核心之旅》中,我介绍了innodb_diagrams项目来记录InnoDB的内部,它提供了这篇文章中用到的图表。稍后,在对innodb_ruby的快速介绍中,我介绍了innodb_space命令行工具的安装和一些快速演示。 在InnoDB索引页的物理结构中描述了InnoDB索引页的物理结构,在InnoDB的B+树索引结构中描述了InnoDB的逻辑结构。现在我们将详细了解这些页面中使用的记录的物理结构。 在这篇文章中,只考虑了紧凑行格式(用于Barracuda表格式)。
InnoDB数据引擎使用B+树构造索引结构,其中的索引类型依据参与检索的字段不同可以分为主索引和非主索引;依据B+树叶子节点上真实数据的组织情况又可以分为聚族索引和非聚族索引。每一个索引B+树结构都会有一个独立的存储区域来存放,并且在需要进行检索时将这个结构加载到内存区域。真实情况是InnoDB引擎会加载索引B+树结构到内存的Buffer Pool区域。
www.cnblogs.com/wyc1994666/p/10831039.html
你好,我是田哥。这篇文章是因为一位朋友前天出去面试了,然后面试上来就一顿MySQL所以追问,幸好她和我有深入的探讨MySQL索引,熬过此劫,也成功进入二面,同时也希望本文对你有所帮助。
我们最近在看关于Mysql 的相关知识,也和现在面试的小伙伴们做了一些采访,问到了一些相关的面试题,说实话,现在面试问的是越来越复杂了,很多时候也不从基础问了,直接项目走起,然后深挖项目中的一些问题,接着就是数据库中的相关问题,今天了不起来和大家一起聊一下关于 Mysql 几个经常问,但是却让人很蒙圈的面试题。
前一阵子,又跑出去搞了一场面试,心态算是崩了,关于MySQL索引的原理及使用被面试官怼的体无完肤,立志要总结一番,然后一直没有时间(其实是懒……),准备好了吗?
InnoDB使用一个或多个数据文件存储数据和索引。每个数据文件称为表空间,其中包含一个或多个段。每个段都是固定大小的,通常为1MB或2MB。表空间可以是自动扩展的,也可以是固定大小的。
索引可以分为聚簇索引和非聚簇索引。聚簇索引通过树形结构重排表中的数据来提高数据的访问速度,非聚簇索引则通过维护表中的数据指针来提高数据的索引。
为什么在 MySQL数据库中,一条慢查询只要添加上合适的索引,查询速度就能提升一个档次?对于 MySQL,如何巧用索引优化SQL语句性能?需要注意什么问题?
索引按照物理实现方式,索引可以分为 2 种:聚簇(聚集)和非聚簇(非聚集)索引。我们也把非聚集 索引称为二级索引或者辅助索引。
在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。
* 如果表没有主键,则会默认第一个NOT NULL,且唯一(UNIQUE)的列作为聚簇索引
MySQL的索引分类问题一直让人头疼,几乎所有的资料都会给你列一个长长的清单,给你介绍什么主键索引、单值索引,覆盖索引,自适应哈希索引,全文索引,聚簇索引,非聚簇索引等……给人的感觉就是云里雾里,好像MySQL索引的实现方式有很多种,但是都没有一个清晰的分类。所以本人尝试总结了一下如何给MySQL的索引类型分类,便于大家记忆,由于MySQL中支持多种存储引擎,在不同的存储引擎中实现略微有所差距,下文中如果没有特殊声明,默认指的都是InnoDB存储引擎。
原文 http://blog.csdn.net/dinglang_2009/article/details/5951428
答:如果把完整的用户记录放到叶子节点就太占空间了,每当给非主键列创建索引的时候,都需要复制一份完整的用户记录。太浪费空间了。
可以把没有索引的表理解为Java中的List,在没有索引的情况下,我们要查找指定的数据,只能遍历这个list,但是随着数据量的逐渐增大,遍历list产生的开销也随之增大。因此我们需要一个无需遍历整个list(ps:无需扫描整张表)就可以找到指定数据的方案,这个方案就是索引。(ps:遍历list可以理解为mysql的全表扫描)
官方定义:索引(Index)是帮助MySQL高效获取数据的数据结构,即索引是数据结构。 其出现就是为了提高数据查询效率,就像书的目录。
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!
一个表可能没有主键,但是一定会有聚簇索引。因为如果没有定义主键,Innodb就会取第一个非空的唯一索引代替。如果没有这样的索引,Innodb会隐式创建一个内置的rowid作为聚簇索引。
MySQL的InnoDB索引数据结构是B+树,主键索引叶子节点的值存储的就是MySQL的数据行,普通索引的叶子节点的值存储的是主键值,这是了解聚簇索引和非聚簇索引的前提
说到索引,很多人都知道“索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址,在数据十分庞大的时候,索引可以大大加快查询的速度,这是因为使用索引后可以不用扫描全表来定位某行的数据,而是先通过索引表找到该行数据对应的物理地址然后访问相应的数据。”
MySQL中每个表都有一个聚簇索引( clustered index ),除此之外的表上的每个非聚簇索引都是二级索引,又叫辅助索引( secondary indexes )。以InnoDB来说,每个InnoDB表具有一个特殊的索引称为聚集索引。如果表上定义有主键,那么该主键索引是聚集索引。如果表中没有定义主键,那么MySQL取第一个唯一索引( unique )而且只含非空列( NOT NULL )作为主键,InnoDB使用它作为聚集索引。如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚簇索引。
上篇文章说了b+树索引的方案,因为用之前二分法查找,前提条件是索引必须是挨着的,而受到用户记录数的启发,建立了和用户记录真实数据页一样的目录记录页(索引),并且最高三层,最高层是根节点,最底层是叶子节点,其他是非叶子节点,record_type为0 代表普通数据页,1代表目录记录页。
聚簇索引就是按照每张表的主键构造一颗B+树,同时叶子节点中存放的就是整张表的行记录数据,也将聚集索引的叶子节点称为数据页。这个特性决定了索引组织表中数据也是索引的一部分,每张表只能拥有一个聚簇索引。
InnoDB的索引基于B+树实现,每张InnoDB的表都有一个特殊的索引,叫做聚簇索引(Clustered Index),聚簇索引存储了表中的真实数据。索引项的顺序和真实的表数据顺序是一致的,B+树的叶子节点存储了真实的数据。这也就是所谓的“数据即索引”。
首先,索引(Index)是什么?如果我直接告诉你索引是数据库管理系统中的一个有序的数据结构,你可能会有点懵逼。
MySQL一直是面试中的热点问题,也难道了很多的面试者。其实MySQL没那么难,只是大家没有系统化、实战性的过去学习、总结。同时很多开发者在实际的开发过程中也很少去接触一些偏向底层的知识。
领取专属 10元无门槛券
手把手带您无忧上云