在全球信息产业高速发展的背景下,IDC预测,2018 到 2025 年之间,全球产生的数据量将会从 33 ZB 增长到 175 ZB, 复合增长率27%,其中超过 80%的数据都会是处理难度较大的非结构化数据,如文档、文本、图形、图像、音频、视频等。非结构化数据在大数据时代的重要地位已成为共识。近些年,伴随着大数据存储、人工智能(AI)等技术的蓬勃发展,非结构化数据的价值得到了巨大的发挥。如:自然语言处理、图像识别、语音识别等技术,已在各行业得到广泛应用,并不断的提炼数据中的价值。
“数据猿年度重磅活动预告:2020年度金猿策划活动(金猿榜单发布+金猿奖杯颁发+2.0版产业图谱+落地颁奖大会)即将推出,敬请咨询期待!
数据库、数据仓库和数据湖是数据管理系统中常见的三种概念,它们在存储结构、处理数据的方式、用途等方面各有特点。以下是对这三个概念的简要讲解:
大数据测试可以定义为涉及检查和验证大数据应用程序功能的过程。大数据是传统存储系统无法处理的大量数据的集合。
“IT有得聊”是机械工业出版社旗下IT专业资讯和服务平台,致力于帮助读者在广义的IT领域里,掌握更专业、更实用的知识与技能,快速提升职场竞争力。 点击蓝色微信名可快速关注我们。
维基百科定义: 大数据是指利用常用软件工具捕获,管理和处理数据所耗时间超过可容忍时间的数据集。
在信息时代,数据处理是任何企业和组织都必不可少的一项工作。大数据和数据库是两种主要的数据处理方式,它们各有优势和特点。本文将比较大数据和数据库的关系、区别以及它们的应用场景。
Hadoop之所以大数据时代得到重用,很大程度上来说,就是因为在Hadoop在大数据处理上有很大的优势,针对大规模、多样化的大数据,进行高效准确的处理。那么Hadoop能处理哪些类型数据,Hadoop处理数据的优势是什么,下面我们来详细了解一下。
爬虫的一个重要步骤就是页面解析与数据提取。更多内容请参考:Python学习指南 页面解析与数据提取 实际上爬虫一共就四个主要步骤: 定(要知道你准备在哪个范围或者网站去搜索) 爬(将所有的网站的内容全部爬下来) 取(分析数据,去掉对我们没用处的数据) 存(按照我们想要的方式存储和使用) 表(可以根据数据的类型通过一些图标展示) 以前学的就是如何从网站去爬数据,而爬下来的数据却没做分析,现在,就开始对数据做一些分析。 数据,可分为非结构化数据和结构化数据 非结构化数据:先有数据,再有结构 结
2022 年 9 月 24-25 日,首届非结构化数据峰会(2022 Unstructured Data Summit)在线上举行。本次峰会由 Zilliz 主办,主题为「矩阵革命,向量连接世界」,峰会设置了一系列 Keynote 和分论坛演讲,围绕人工智能在非结构化搜索领域的顶尖技术、热门话题、前沿观察展开分享和探讨,共同探索行业发展的新风向。 对于主办方 Zilliz,如果近期有关注科技圈投融资动态的话,应该对它不陌生。不久前,向量数据库公司 Zilliz 宣布完成 6000 万美元的新一笔融资,通过这
关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。如果做一个更形象的解释,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用;大数据则相当于海量数据的“数据库”。
大数据是什么?其实大数据是满足数据达到海量这个规模以后,对这部分数据要完成存储包括计算的一种技术。
ETL流程是数据仓库建设的核心环节,它涉及从各种数据源中抽取数据,经过清洗、转换和整合,最终加载到数据仓库中以供分析和决策。在数据仓库国产化的背景下,ETL流程扮演着重要的角色,今天我们就来讲讲ETL流程的概念和设计方式。
这是一本小书而不是一篇文章,因为它详实细致的让你从一个完全不了解大数据技术及相关应用的门外汉,变成一个熟知其概念和意义的“内行人”,所以它很棒! 主要内容 ·1来自Wikibon社区的大数据宣言 ·2数据处理与分析:传统方式 ·3大数据性质的变化 ·4大数据处理和分析的新方法 4.1Hadoop 4.2NoSQL 4.3大规模并行分析数据库 ·5大数据方法的互补 ·6大数据供应商发展状况 ·7大数据:实际使用案例 ·8大数据技能差距 ·9大数据:企业和供应商的下一步
本博客主要是基于文本的非结构化数据概述。我知道,这听起来不是一个很性感的话题,但在你按下浏览器标签上的 x 按钮之前,先听我们说完。
最近的大数据是非常的火,如何理解大数据与DATABASE 不同的地方,今天想瞎说八道一下,个人对大数据和数据库之间不同的一些想法。
我们先来了解下数据化结构与非数据化结构 一、数据化结构 数据化结构,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统、医疗HIS数据库、教育一卡通、政府行政审批、其他核心数
之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。 BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。 伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,Extraction Transformation Loading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足
在当今数据驱动的商业世界中,高效、灵活的数据管理成为企业成功的关键。数据仓库和数据湖,作为数据存储和处理的两种主流技术,分别扮演着独特而重要的角色。
首先,在学习大数据之前,需要了解什么是大数据?它是如何诞生的?它有哪些应用场景?只有了解了这些,才能窥视大数据的技术全貌。一个技术的诞生,是顺应时代的,是用于解决某些问题的,它的发展也一定是有内在逻辑的。接下来,一起去看看。
云计算、大数据、人工智能技术的广泛应用模糊了传统网络安全的边界。在数据安全领域,个人和企业面临哪些挑战?《网络数据安全管理条例》拟落地,对个人和企业将有哪些影响?人工智能技术将为网络安全带来哪些新的解题思路?
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理、实时分析、机器学习,以指导做出更好地决策。
BI(Business Intelligence),中文翻译是商务智能,是一套完整的解决方案,用来将组织中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助组织做出明智的业务经营决策。 大数据(Big Data)是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单而言,大数据更偏重于发现,以及猜测并印证的循环逼近过程。 不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,我们从几下几个纬度来可以迅速的看出两者的区别: 第一
本文由CDA作者库成员HarryZhu原创,并授权发布。 CDA作者库凝聚原创力量,只做更有价值的分享。 介绍 现代化数据科学中的 DataFrame 概念源起R语言,而 Python Pandas
所谓海量,就是数据量很大,可能是TB级别甚至是PB级别,导致无法一次性载入内存或者无法在较短时间内处理完成。面对海量数据,我们想到的最简单方法即是分治法,即分开处理,大而化小,小而治之。我们也可以想到集群分布式处理。
之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。 BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。 伴随着BI的发展,是ETL,数据集成平台等概念的提出。 ETL,Extraction Transformation Loading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关
MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体提供数据库服务。非共享数据库集群有完全的可伸缩性、高可用、高性能、优秀的性价比、资源共享等优势。
写在前面: 博主是一名软件工程系大数据应用开发专业大二的学生,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一
1.大数据的概念 麦肯锡公司对大数据的定义: 大数据是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。 维基百科对大数据的定义: 大数据是指利用常用软件工具来获取、管理和处理数据所耗时间超过可容忍时间限制的数据集。这并不是一个精确的定义,因为无法确定常用软件工具的范围,可容忍时间也是个概略的描述。
你想了解大数据,却对生涩的术语毫不知情?你想了解大数据的市场和应用,却又没有好的案例和解说?别担心,这本来自Wikibon社区的小书想要帮你。
伴随着大数据技术的兴起,半结构化数据得到了迅猛发展,时至今日仍趋势不减。半结构化数据被视为一种特殊的结构化数据,其拥有语义元素,是一种自描述结构。常见的半结构数据格式有,XML、Json等。据IDC预测,2025年,结构化数据规模将达35ZB,约占数据总量的20%。虽无准确数据表明半结构化数据在结构化数据中的占比。但通过我们对日常生产、生活中遇到的各类数据格式推断,半结构化数据占有结构化数据的半壁江山不算为过。比如,我们生活中最常遇到的HTML数据等就是一种特殊的XML结构。伴随着半结构化数据的广泛应用,面向半结构化数据的分析处理需求也不断提升。
当今的普遍共识是大数据是有特定的属性的。在大多数大数据圈中,它们被称为四个V:体积,种类,速度和准确性(volume, variety, velocity, veracity.)。
我们谈论数据中台之前,我们也听到过数据平台、数据仓库、数据湖的相关概念,它们都与数据有关系,但他们和数据中台有什么样的区别,下面我们将分别介绍数据平台数据仓库数据湖和数据中台。
主讲嘉宾:吴东亚 主持人:中关村大数据产业联盟 副秘书长陈新河 承办:中关村大数据产业联盟 吴东亚,中国电子技术标准化研究院信息技术研究中心标准总监。1972年生,籍贯黑龙江。1992年毕业于东南大学自动控制系毕业,1992-2001年,在中国空间技术研究院硕士学习、工作,参加“神舟一号”飞船地面测试系统研制工作,积累了一线科研和工程经验。2001-2004年,北京理工大学博士学习。2004至今,中国电子技术标准化研究院工作,期间到欧洲标准化机构留学。涉足电子信息技术领域国家/行业标准化、检测、认证、注册等
如果你正在使用Elastic Stack并且正尝试将自定义Logstash日志映射到Elasticsearch,那么这篇文章适合你。
允中 发自 凹非寺 量子位 编辑 | 公众号 QbitAI 10月23日数据湖高峰论坛上,阿里巴巴集团副总裁、阿里云智能数据库产品事业部负责人、达摩院数据库与存储实验室负责人李飞飞表示:“云原生作为云计算领域的关键技术与基础创新,正在加速数据分析全面进入数据库大数据一体化时代”。 △ 阿里巴巴集团副总裁、阿里云智能数据库产品事业部负责人李飞飞 他表示,随着数字化转型进程深入推进,企业的数据存储、处理、增长速度发生了巨大的变化,传统数据分析系统在成本、规模、数据多样性等方面面临很大的挑战。云计算的发展正在加
目前,大数据领域每年都会涌现出大量新的技术,成为大数据获取、存储、处理分析或可视化的有效手段。大数据技术能够将大规模数据中隐藏的信息和知识挖掘出来,为人类社会经济活动提供依据,提高各个领域的运行效率,
本文作者主要从总体思路、模型设计、数据架构、数据治理四个方面介绍了如何利用大数据平台的特性,构建更贴合大数据应用的数据仓库。
GPT的横空出世将全球的目光吸引至大语言模型,各行各业都尝试着利用这个“黑科技”提高工作效率,加速行业发展。Future3 Campus携手Footprint Analytics共同深入研究AI与Web3结合的无限可能,联合发布了《AI与Web3数据行业融合现状、竞争格局与未来机遇探析》研报。该研报分为上下两篇,本文为上篇,由Footprint Analytics研究员Lesley、Shelly共同编撰。下篇由Future3 Campus研究员Sherry、Humphrey共同编撰。
随着业务数据量不断增长的同时,数据结构也变得越来越灵活多样,数据不再局限于规整的结构化数据,半结构化、非结构化数据在数据域处理中的占比逐年上升,因此对不同模态的数据进行智能化数据处理的需求越来越迫切。
大数据技术已经被应用到各行各业,涉及人们生活的方方面面。大数据技术大大提高了数据存储和计算能力,从而为企业快速决策提供了数据支撑,能够助力企业改进业务流程、控制成本、提高产品质量,应用大数据技术为企业核心竞争力的提升打下了坚实的基础。
数据湖是近两年中比较新的技术在大数据领域中,对于一个真正的数据湖应该是什么样子,现在对数据湖认知还是处在探索的阶段,像现在代表的开源产品有iceberg、hudi、Delta Lake。
数据湖(Data Lake)是一个存储企业的各种各样原始数据的大型仓库,其中的数据可供存取、处理、分析及传输。数据湖是以其自然格式存储的数据的系统或存储库,通常是对象blob或文件。数据湖通常是企业所有数据的单一存储,包括源系统数据的原始副本,以及用于报告、可视化、分析和机器学习等任务的转换数据。数据湖可以包括来自关系数据库(行和列)的结构化数据,半结构化数据(CSV,日志,XML,JSON),非结构化数据(电子邮件,文档,PDF)和二进制数据(图像,音频,视频)。
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么? 0.沃尔玛纸尿裤和啤酒 在了解湖仓一体化之前,我们先来看一则有关数据仓库的有趣故事吧~ 沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!后来经过大量实际调查和分析,发现在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒,这是因为美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。可见大数据其实很早之前就已经伴随在我们的日常生活之中了。 那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖? 1.1 数据仓库 早期系统采用数据库来存放管理数据,但是随着大数据技术的兴起,大家想要通过大数据技术来找到数据之间可能存在的关系,所以大家设计了一套新的数据存储管理系统,把所有的数据全部存储到数据仓库,然后统一对数据处理,这个系统叫做数据仓库。而数据库缺少灵活和强大的处理能力。 在计算机领域,数据仓库(英语:data warehouse,也称为企业数据仓库)是用于报告和数据分析的系统,被认为是商业智能的核心组件。数据仓库是来自一个或多个不同源的集成数据的中央存储库。数据仓库将当前和历史数据存储在一起,以利各种分析方法如在线分析处理(OLAP)、数据挖掘(Data Mining),帮助决策者能快速从大量数据中,分析出有价值的信息,帮助建构商业智能(BI)。 尽管仓库非常适合结构化数据,但是许多现代企业必须处理非结构化数据,半结构化数据以及具有高多样性、高速度和高容量的数据。数据仓库不适用于许多此类场景,并且成本效益并非最佳。
BI(Business Intelligence),即商业智能,是一个完整的解决方案,用于有效整合企业现有数据,快速准确地提供分析报告,并提出决策依据,帮助企业做出明智的经营管理决策。
现在的社会是一个科技与信息高速发展的社会,人们之间的交流越来越密切,生活也越来越方便,大数据技术不知不觉地渗入人们生活的方方面面。人不仅生产大数据,同是也在使用大数据
Aberdeen 的一项调查表明,实施数据湖的组织比同类公司在有机收入增长方面高出 9%。这些领导者能够进行新类型的分析,例如通过日志文件、来自点击流的数据、社交媒体以及存储在数据湖中的互联网连接设备等进行机器学习。这有助于他们通过吸引和留住客户、提高生产力、主动维护设备以及做出明智的决策来更快地识别和应对业务增长机会。
近日,墨奇科技宣布已顺利完成 2.5 亿元人民币 B 轮融资。墨奇科技成立于 2016 年,致力于从人工智能的源头问题出发,研发领先的人工智能技术来自动化地处理 AI 知识数据,最终增强人类处理信息的能力。目前,墨奇科技的两大核心业务为新型 AI 知识数据库和新一代生物识别平台。此轮融资后,墨奇科技将会重点投入在AI 底层数据的通用处理技术,持续发力以 AI 知识为核心的新型非结构化数据库。 图像、视频、音频等非结构化数据在大数据中占比巨大,而现有的方式往往针对特定类型数据来做训练,得到的模型并不通用。如何以统一的方式处理非结构化数据成为 AI 未来发展的关键挑战。 墨奇科技开创性地发展了新型 AI 知识数据库来解决这一问题。利用新型 AI 知识数据库的关键技术,墨奇科技打造了首个行业应用,即面向未来身份识别认证需求的新一代生物识别平台。
领取专属 10元无门槛券
手把手带您无忧上云