首页
学习
活动
专区
圈层
工具
发布

python dataframe筛选列表的值转为list【常用】

筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...,当b列中为’1’时,所有c的值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] #...筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist()...print(a_b_c) # out: ['一', '一'] # 将a列整列的值,转为list(两种) a_list_1 = df.a.tolist() a_list_2 = df['a'].tolist

5.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Python 创建使用 for 循环的元组列表

    Python 的关键数据结构是列表和元组。元组元素一旦设置,就无法更改。这称为不可变性。但是列表元素可以在初始化后修改。在处理需要组合在一起的数据时,for 循环用于创建元组列表。...任何长度的单个元组都可以在一行代码中解压缩为多个变量。 算法 让一个空列表保存元组。 使用 for 循环循环访问元素或对象。 对于每个条目,创建一个元组并将其追加到列表中。...例 1 从员工姓名列表中创建包含员工姓名及其相应员工 ID 的元组列表。...结论 与列表不同,Python 中的元组是一个有序的、不可变的项目集合。创建后,无法对其进行修改。元组包括多种数据类型,包括整数、字符串和浮点数。...本指南演示了如何在 Python 中使用 for 循环来创建元组列表。当您希望构造具有不同值的多个元组时,使用 for 循环生成元组列表可能很方便。

    1.7K20

    python中列表的使用

    目的:熟练使用列表函数,方便管理多个变量值 环境:ubuntu 16.04  python 3.5.2 情景:列表应该是数据处理时经常使用到一种数据类型,可以有序、组合的操作值存储,是很实用的函数。。。...这是最后一篇整理的笔记,发现排版很浪费时间,也得不到交流,还是用类似onenote写笔记的方式快。...列表: list(),列表是一个可迭代对象,常用的操作有for, join, sort, reverse, sorted, 索引和切片。...它本身有的操作包括: box = list() 或 box = [] 设置空的列表 box.append('value') 尾部追加元素 box.insert(1, 'value') 索引插入元素 box...索引替换或写入元素 box.pop() 删除尾部元素 box.pop(1) 索引删除元素 box.index('value') 获取元素下标 del box[1] 删除指定元素 sorted(box) 返回一个新的正向列表

    7K10

    使用 Python 删除大于特定值的列表元素

    在本文中,我们将学习如何从 Python 中的列表中删除大于特定值的元素。...− 创建一个变量来存储输入列表。 创建另一个变量来存储另一个输入值。 使用 for 循环循环访问输入列表中的每个元素。 使用 if 条件语句检查当前元素是否大于指定的输入值。...如果条件为 true,则使用 to remove() 函数从列表中删除该当前元素,方法是将其作为参数传递给它。 删除大于指定输入值的元素后打印结果列表。...例 以下程序使用列表推导式从输入列表中删除大于指定输入值的元素 − # input list inputList = [45, 150, 20, 90, 15, 55, 12, 75] # Printing...filter() 函数 − 使用确定序列中每个元素是真还是假的函数过滤指定的序列。 使用 list() 函数将此过滤器对象转换为列表。 删除大于指定输入值的元素后打印结果列表。

    12.8K30

    Python 中寻找列表最大值位置的方法

    前言在 Python 编程中,经常需要对列表进行操作,其中一个常见的任务是寻找列表中的最大值以及其所在的位置。本文将介绍几种方法来实现这个任务。...方法一:使用内置函数 max() 和 index()Python 提供了内置函数 max() 来找到列表中的最大值,同时可以使用 index() 方法找到该最大值在列表中的位置。...", max_value)print("最大值位置:", max_index)---------输出结果如下:最大值: 20最大值位置: 2方法二:使用循环查找最大值和位置另一种方法是通过循环遍历列表,...() 函数可以同时获取列表中的值和它们的索引,结合这个特性,我们可以更简洁地找到最大值及其位置。...总结本文介绍了几种方法来寻找列表中的最大值及其位置。使用内置函数 max() 和 index() 是最简单直接的方法,但可能不够高效,尤其是当列表很大时。

    1.8K10

    Python实现对规整的二维列表中每个子列表对应的值求和

    一、前言 前几天在Python白银交流群有个叫【dcpeng】的粉丝问了一个Python列表求和的问题,如下图所示。...lst = [[1, 2, 3, 4], [1, 5, 1, 2], [2, 3, 4, 5], [5, 3, 1, 3]] [print(sum(i)) for i in zip(*lst)] 使用了列表解包的方法...【Daler】解法 一开始【猫药师Kelly】大佬给了一个思路,使用np array实现,后来【Daler】直接安排了一份代码,如下所示: import numpy as np lst = [[1,...【月神】解法 这里【月神】给了一个难顶的解法,使用了内置函数和匿名函数来实现,代码如下所示: from functools import reduce lst = [[1, 2, 3, 4],...这篇文章主要分享了使用Python实现对规整的二维列表中每个子列表对应的值求和的问题,文中针对该问题给出了具体的解析和代码演示,一共3个方法,顺利帮助粉丝顺利解决了问题。

    6.1K40

    如何使用Cook创建复杂的密码字典列表

    Cook介绍 Cook是一款功能强大的字典生成工具,该工具可以通过创建单词的排列和组合以生成复杂的字典和密码。Cook可以使用一系列预定于前缀、后缀、单词和模式来创建复杂的节点、字典和密码。.../cook 工具更新: go get -u github.com/giteshnxtlvl/cook 自定义工具 通过自定义配置开发,研究人员可以轻松创建和使用自己的字典列表或密码模式: 创建一个名为yaml...创建一个环境变量“COOK =Path of file”。 最后,运行命令“cook -config”。 注意,如果你不想自定义配置工具的话,就不需要在环境变量中设置COOK了。...:archive cook admin,root:_:archive 创建你自己的数据集 使用CRUNCH 模式/功能 使用秘诀: cook -name elliot -birth date(17,...使用唯一名称保存字典: 文件未找到 如果参数中标记的文件未找到,并不会报错,而是将会运行下列命令: cook -file file_not_exists.txt admin,root:_:file admin_file_not_exists.txt

    4.9K10

    Pandas中求某一列中每个列表的平均值

    一、前言 前几天在Python最强王者交流群【冫马讠成】问了一道Pandas处理的问题,如下图所示。...原始数据如下: df = pd.DataFrame({ 'student_id': ['S001','S002','S003'], 'marks': [[88,89,90],[78,81,60...],[84,83,91]]}) df 预期的结果如下图所示: 二、实现过程 方法一 这里【瑜亮老师】给出一个可行的代码,大家后面遇到了,可以对应的修改下,事半功倍,代码如下所示: df['dmean...(np.mean) 运行之后,结果就是想要的了。...完美的解决了粉丝的问题! 三、总结 大家好,我是皮皮。这篇文章主要盘点了一道使用Pandas处理数据的问题,文中针对该问题给出了具体的解析和代码实现,一共两个方法,帮助粉丝顺利解决了问题。

    6.7K10

    对dataframe的一列做数据操作,列表推导式和apply那个效率高啊?

    二、实现过程 这里【ChatGPT】给出了一个思路,如下所示: 通常情况下,使用列表推导式的效率比使用apply要高。因为列表推导式是基于Python底层的循环语法实现,比apply更加高效。...在进行简单的运算时,如对某一列数据进行加减乘除等操作,可以通过以下代码使用列表推导式: df['new_col'] = [x*2 for x in df['old_col']] 如果需要进行复杂的函数操作...,则可以使用apply函数,例如: def my_function(x): # 进行一些复杂的操作 return result df['new_col'] = df['old_col'].apply...(my_function) 但需要注意的是,在处理大数据集时,apply函数可能会耗费较长时间。...此时可以考虑使用向量化操作或并行计算来提高效率。 后来【瑜亮老师】也补充了一个回答,如下图所示: 三、总结 大家好,我是皮皮。

    56820

    如何在 Python 中计算列表中的唯一值?

    方法 1:使用集合 计算列表中唯一值的最简单和最直接的方法之一是首先将列表转换为集合。Python 中的集合是唯一元素的无序集合,这意味着当列表转换为集合时,会自动删除重复值。...生成的集合unique_set仅包含唯一值,我们使用 len() 函数来获取唯一值的计数。 方法 2:使用字典 计算列表中唯一值的另一种方法是使用 Python 中的字典。...然后,我们循环访问列表my_list并将每个值作为字典中的键添加,值为 1。由于字典不允许重复键,因此只会将列表中的唯一值添加到字典中。最后,我们使用 len() 函数来获取字典中唯一值的计数。...方法 3:使用列表理解 Python 中的列表理解是操作列表的有效方法。它为创建新列表提供了紧凑且可读的语法。有趣的是,列表推导也可以计算列表中的唯一值。...这个概念很简单,我们使用列表推导创建一个新列表,该列表仅包含原始列表中的唯一值。然后,我们使用 len() 函数来获取这个新列表中的元素计数。

    4.2K20

    如何理解和使用Python中的列表

    列表简介(list) 列表是Python中内置有序可变序列,列表的所有元素放在一对中括号“[]”中,并使用逗号分隔开;一个列表中的数据类型可以各不相同,可以同时分别为整数、实数、字符串等基本类型,甚至是列表...列表的使用: 1. 列表的创建 2. 操作列表中的数据 列表中的对象都会按照插入的顺序存储到列表中,第一个插入的对象保存到第一个位置,第二个保存到第二个位置。...创建一个包含有5个元素的列表 当向列表中添加多个元素时,多个元素之间使用,隔开 my_list = [,,,,] 3)....min() 获取列表中的最小值 max() 获取列表中的最大值 arr = [,,,,,] print(min(arr) , max(arr)) 运行结果: ?...extend() 使用新的序列来扩展当前序列 需要一个序列作为参数,它会将该序列中的元素添加到当前列表中 employees = ['Yuki','Jack','Kevin','Ray','Bin',

    9.1K20

    python中列表的sort方法使用详解

    一、基本形式 列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的。...排序,数字、字符串按照ASCII,中文按照unicode从小到大排序 x = [4, 6, 2, 1, 7, 9] x.sort() print (x) # [1, 2, 4, 6, 7, 9] 如果需要一个排序好的副本...x的元素全部拷贝给y,如果简单的把x赋值给y:y = x,y和x还是指向同一个列表,并没有产生新的副本。...另一种获取已排序的列表副本的方法是使用sorted函数: x =[4, 6, 2, 1, 7, 9] y = sorted(x) print (y) #[1, 2, 4, 6, 7, 9] print...(key = len) print (x) # ['m', 'mm', 'mm', 'mmm'] 2、reverse实现降序排序,需要提供一个布尔值: y = [3, 2, 8 ,0 , 1] y.sort

    2.8K90

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。...首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    4.3K00
    领券