随着经济全球化和技术革新的加速,银行业务正面临前所未有的挑战和变革。在这个数字化时代,银行业的传统运作模式受到挑战,特别是在零售贷款领域。这一领域的核心挑战在于如何在激烈的市场竞争中实现有效的营销策略,同时保持严格的风险控制。
数据猿导读 如今,虽然很多银行还没有设立单独的像“大数据部”这样的机构,甚至还没有成文的大数据战略规划等纲领性文件,但每家银行都把大数据作为一项非常重要的战略及措施在推进。 记者 | 郭敏 本文长度为
6年前,那年我刚刚大二,大二的暑假总觉得该做点有意义的事情,于是报名了学校的数学建模培训,很幸运地获得了派往华中农业大学交流锻炼的机会,在那里也认识了一帮志同道合之人。
作者 CDA 数据分析师 前言 2017年7月29日,由CDA数据分析师主办,以“跨界互联 数据未来”为主题的CDAS 2017第四届中国数据分析师行业峰会在北京中国大饭店隆重举行。 7月29日当天,除了引人眼球的主会场以外,当天同步开放11个分论坛,我们将逐一推送每个分论坛的盛况,以及演讲嘉宾速记稿整理,给每一个CDA成员奉上干货。 CDAS 2017中国数据分析师行业峰会下午的大数据与金融分论坛中,来自IBM、诸葛io、民生银行等六位专家与教授,分享了大数据在金融领域的实践和应用 人工智能助
从事数据分析要学那些语言呢?其实小编跟跟学员还有已经从事数据分析行业的人接触下来,给我的感觉是对于这个初级的数据分析师来,一般前二年做差不多都是老大让你做的是处理临时需求为主,如果小明给我做个报表,给市场部那边拉一些流量情况,所以主要前两年可能如果精通SQL与EXCEL再会点SPSS就差不多了,2年以后,老大会把一些:经营性分析需求与竞品分析给你,这里你可能你要需求统计软件,3年以后会让你做一些会员营销及其它的数据挖掘,这里一般说来如果是互联网行业可能R语言是最为流行。因为R语言是开源的,所以互联网企业很多
互联网的放大效应使公众的容忍度越来越低,尤其是信息安全事件的影响,让银行面临的声誉风险压力倍增。不容乐观的是,在数据大集中已经成为潮流的今天,信息安全风险也在急剧集中,银行重要客户的数据一旦被不法分子
百分点技术副总裁刘译璟:未来银行,将会颠覆一切
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
本文介绍了金融大数据在金融风控、精准营销和增值业务中的应用,并探讨了金融大数据平台的发展趋势。
(图为:剑网3 玩家Cosplay) 文|周学春,一个在银行做挖掘的博士,微信公众号:比格堆塔 心态不够平静,晚上在小区里面逛了一圈又一圈、一圈又一圈、一圈又一圈。 最近看了《再次出发》,大意是讲两个失意的音乐人重振旗鼓再次出发,挺不错。但是,总觉得在电影院里面看剧情片,节奏太慢受不了,个人偏好。倒是里面所有的音乐都很好听。它会给你平静、简单、自然、祥和、空灵和穿透的感觉。适合写这篇文章的时候循环播放。 大数据是什么?其实我也不太清楚。但是人们常常用四个关键词去刻画和描述它。即Volume、Variet
大数据、云计算、智慧城市……近年,一堆和数据有关的词汇被频繁提及,大数据逐渐渗透到大众生活里。企业纷纷宣称自己的大数据能力很强,但网民被推送的“精准广告”常常并非所需而被当做垃圾信息处理;手机上,很多很炫的APP应用吸引用户的同时,用户却无奈的发现自己的通讯,短信,位置信息被对方强行采集。 中国企业的大数据能力究竟如何?大数据研究的前景如何?大数据方便了生活,也带来了隐私和安全风险,其边界在哪里?就国内大数据和统计学行业热点问题,让我们听听北京大学光华管理学院商务统计与经济计量系教授王汉生怎么说。 企业数据
选文编译:钟云岚,Shawn 校对: Cody,Helen 素材来源:https://www.cbinsights.com/blog/major-banks-fin-tech-startup-investment-trends/ 编者按:在一次高盛高层交流的采访中,高盛技术部的负责人Don Duet表示公司正逐渐加大对人工智能和机器学习领域的投资。“是的,我们发现提取数据并将其信息转换为资产的能力是我们的战略计划中至关重要的一部分。”他如是说道,“技术策略和商业策略对于一个公司来说是同等重要的,这可以帮助我
我有一个风一样的名字, 我写风险管理, 也写数据分析, 他们都叫我, 风析人。 本系列是关于风险管理, 也是关于数据分析的。 【风·析】第一文:风险管理与数据分析 1 风险管理和数据分析 风险管理,是金融各领域中与数据分析关系很大的一个方向。风险本身可看做是一种波动,损失的发生又依赖一定的概率,这就意味着,统计学里的分布、大数定律、期望、方差,在风险管理中都会派上用场,而这些东西的载体又是数据。 尤其是近年来大数据技术的发展,我们常常能听到大数据用于欺诈检测、风险预警、信用评级,这些都与数据有
7月22日电 综合美国《世界日报》报道,全球大数据(big data)时代来临,很多民众感受到大数据带来的便利和好处,由于巨量数据需要分析,分析员则成为很多企业和公司必备的职位,连一些看上去和数据毫不相关的企业,也用分析员进行数据分析并提出改善建议。由此而产生的数据分析以及统计等大学相关专业则成了“香饽饽”、“金饭碗”,很多赴美中国留学生争相申请,这类专业收入高,水涨船高,入学竞争越来越激烈。 两年前“海归”中国的王先生说,他回国后一次到商场买了两条烟,当他刷信用卡结账的瞬间,立刻收到银行打来的电话,问
在当今高度数字化的商业世界中,数据分析技术已成为企业竞争力的关键。它们不仅能够提供深入的市场见解,还能够优化运营效率和客户体验。特别是在银行业,这些技术的应用对于理解和满足日益复杂的客户需求至关重要。
导读:本文由中原银行大数据平台研发工程师白学余分享,主要介绍实时金融数据湖在中原银行的应用。主要内容包括:
介绍 在过去的几年中,人们对数据分析方法越来越重视。通过深入洞察数据情况,帮助很多企业改善了其经营状况。 通过分析数据,企业可以对其企业过往以及未来的表现有了更清晰的认识。通过对未来趋势的窥测,让企业可以对可能发生的意外(如果有的话)情况做好充足的准备。 通过分析数据,企业可以回答这三个主要问题,即:“过去发生了什么”,“现在正在发生什么”,“将来会发生什么”。毫无疑问,数据量的不断攀升,驱动了数据分析行业的快速发展。 数据分析不仅仅局限于汲取过去的经验,而是要能够预测未来的结果从而优化业务资源。因此,在
经常看到有很多人把机器学习和数据分析混为一谈,因此我想分析一下机器学习和数据分析这两个职位之间有什么不同,他们干的事情有什么不同,并且借此来分析下两者的技术背景有什么不同。 首先呢这两者的第一个区别就是他们处理的数据特点不一样。那么怎么可以简单地理解呢? 1、数据处理特点不同 首先从我们的传统上。数据分析他们所处理的是交易数据,而我们机器学习处理的则是行为数据。那么,什么是交易数据,什么是行为数据呢? 比如说对于一个电商来说,他的用户交易数据就是下单,比如说对于银行这样的系统来说,他的交易数据就是用户的存取
经常看到有很多人把机器学习和数据分析混为一谈,因此我想分析一下机器学习和数据分析这两个职位之间有什么不同,他们干的事情有什么不同,并且借此来分析下两者的技术背景有什么不同。 首先呢这两者的第一个区别就是他们处理的数据特点不一样。那么怎么可以简单地理解呢? 首先从我们的传统上。数据分析他们所处理的是交易数据,而我们机器学习处理的则是行为数据。那么,什么是交易数据,什么是行为数据呢?比如说对于一个电商来说,他的用户交易数据就是下单,比如说对于银行这样的系统来说,他的交易数据就是用户的存取款账单,再比如对于电信
作者:CDA 数据分析师 基于数据的科学决策正成为趋势,国内外主要公司都在建立用数据说话、洞察、优化与创新的管理机制。如何利用数据、让数据切实产生价值是每一位数据从业人员应该深入学习并不断实现的目标。今天很有幸采访到了《大数据与机器学习:实践方法与行业案例》的作者陈春宝老师,告诉我们大数据究竟应该如何更接地气儿。 嘉宾介绍 陈春宝 上海交通大学工业工程博士,经济学硕士。在银行、信用卡、医药与电信等行业拥有近十年数据挖掘分析与 SAS 建模经验,现就职于商业银行,在数据挖掘、机器学习
image.png ▲Sas公司大数据研究与发展全球副总裁Paul Kent 专注数据分析近40年的SAS公司,在大数据时代更加如鱼得水。2013财年SAS全球营收达30.2亿美元,中国市场实现整体营收增长37%,新增软件收入增长51%,成为亚太区增长速度最快的市场。 在近日举办的第二届SAS中国用户大会上,SAS公司的高管、专家和用户不止一次提到Value(价值)才是大数据的精髓,这也正是SAS多年潜心研究 的领域。SAS公司大数据研究与发展全球副总裁Paul Kent
哈佛商业评论(HBR)上的一篇热门文章《数据科学家:21世纪最性感的工作》激励了大量人选择商业分析作为职业发展方向。这篇文章的论点之一就是商业分析领域正在增长的就业趋势。
不久之前我曾与一位大型银行的首席执行官一同用餐。他正在考虑是否要退出意大利市场,因为经济形势不景气,而且未来很可能出现一场欧元危机。这位CEO手下的经济学家描绘出一片惨淡的景象,并且计算出经济低迷对公司意味着什么。但是最终,他还是在自己价值观念的指引下做出了决定。 这家银行在意大利已经有了几十年的历史。他不希望意大利人觉得他的银行只能同甘不能共苦。他不希望银行的员工认为他们在时局艰难之际会弃甲而逃。他决定留在意大利,不管未来有什么危机都要坚持下去,即便付出短期代价也在所不惜。 做决策之时他并没有忘记那些数
(文/DAVID BROOKS)不久之前我曾与一位大型银行的首席执行官一同用餐。他正在考虑是否要退出意大利市场,因为经济形势不景气,而且未来很可能出现一场欧元危机。
“AI平台”这个概念,也是最近两年才逐渐流行起来。在2015年之前,与AI平台概念比较相近的是数据建模工具,如比较著名的SAS跟SPSS等。2016年以来,伴随AlphaGO引领着AI概念的广泛传播,AI平台逐步在国内流行起来。国外在定义AI的概念时,主要根据其两大用途进行划分,一是通过机器学习的能力进行数据分析,一般称之为机器学习平台(Machine Learning Platform)或者数据科学平台(Data Science Platform),另外则是通过NLP或者CV接口提供通用AI识别能力,通常称之为AI智能接口。而国内在定义AI平台时,最初只是将“通过云端方式提供深度学习算法或者深度学习模型”称为AI平台。随着深度学习热度的褪去,这个市场由于没有足够的落地场景而冷却,AI平台也随之将数据科学平台的能力与深度学习算法能力逐步结合起来。2018年以来,数据中台及AI平台的概念逐渐兴起,也有不少人将AI平台的概念融入中台,称之为AI中台。
抗击疫情,腾讯云在行动。数据中台是国内提出的概念,那么在国际上是否有类似的架构和案例呢? 本课程将给大家分享几个国外的几个典型案例。
翻译:王竞苧(Selene), Laurelen Tian, 赵娟 校对:Junwei Guan, Wendy Zhou 选文:Yawei X 摘自:https://www.bcgperspectives.com 零售银行业的生意可以说就是数据的生意。银行使用数据可以更好地提取有价值的信息,从而数据有力支持了银行的价值链,并以此形成了银行的很大一部分竞争优势。银行、零售商以及电信公司,比其他行业的公司拥有更多的消费者数据。 相比于其他行业,消费者更倾向于使用数字化的方式去参与各种形式的商业活动,从而银行成
数字经济时代,数字化趋势已然成为各行业共识。银行作为数字化转型的排头兵,积极推动数字技术与实体经济深度融合,核心目的之一即是达成数据驱动业务发展的能力。基于对金融行业数字化的观察,我们发现在银行业的领先实践中,国有行、股份行、城商行均将数据能力作为数字化配套能力建设的重点,以企业级视角进行顶层设计和统筹规划,持续增强数据支撑能力,深化数字化经营管理。而分行在总行的数字化战略下,也纷纷基于实际业务情况,深入探索实践以完善自身数字化建设。
不久之前我曾与一位大型银行的首席执行官一同用餐。他正在考虑是否要退出意大利市场,因为经济形势不景气,而且未来很可能出现一场欧元危机。 这位CEO手下的经济学家描绘出一片惨淡的景象,并且计算出经济低迷对公司意味着什么。但是最终,他还是在自己价值观念的指引下做出了决定。 这家银行在意大利已经有了几十年的历史。他不希望意大利人觉得他的银行只能同甘不能共苦。他不希望银行的员工认为他们在时局艰难之际会弃甲而逃。他决定留在意大利,不管未来有什么危机都要坚持下去,即便付出短期代价也在所不惜。 做决策之时他并没有忘记那些数
平台重点解决行内各级业务人员对数据的统计、分析、利用等诉求。根据用户规模、算力、需求等分析,得出如下用户金字塔模型,针对不同分层的用户,分别洞察其刚需、高频的数据使用场景。
《十四五”数字经济发展规划》《银行业保险业数字化转型指导意见》等政策对银行自主可控、数据、技术发展、业务发展均做了明确指示,需要银行稳步推进数字化转型进程。信创角度看,银行正发起一场自下而上的变革,尤其是资产规模排名在前的头部银行,已完成或部分完成办公系统的国产化替代,预计未来替换进程将逐渐加快;数据角度看,在隐私计算的支撑下,银行在营销、风控等场景开展跨领域的数据合作,实现数据“可用不可见”的陆续落地;业务发展角度,对公数字化转型加速,零售、财富重点发力私域运营,业务转型进入数字化深水区。
调查对象被问到,与传统系统相比,他们看到的大数据中的最大机遇是什么?62% 的人同意实时分析隐藏着当下最大的机遇。
作者:Donna Ferguson 翻译:朱潇男 校对:Shawn 欢迎个人转发朋友圈;其他机构或自媒体转载,务必后台留言,申请授权 不管你是否是某一超市的积分会员,你的支付方式是信用卡还是现金,那些大型超市都了解你的一举一动。 我们都知道超市会通过分析我们的购物信息来进行精准推送-包括一些个性化的购物券及优惠等等。比如说你几个小时前刚刚购物完,现在正准备坐下来看部电影的时候,发现已经有广告推送给你-而且是跟你刚刚买的东西紧密相关的,这时你会有何感受? 或者,Tesco(乐购,英国
从“e融”到“智多星”:江苏银行如何利用大数据实现弯道超车
考过研的朋友可能听说过“三跨”这个词,即跨地区、跨专业、跨学校考研,每多一“跨”,难度就会高不少。
嘉宾介绍: 李永,大数据厂商联盟理事长,20多年从事数据分析实践、10多年电信公司管理、10多年数据仓库BI经验;首批受聘广东省电子政务大数据专家;长期游历MIT、Stanford、CMU从事大数据技
大数据文摘作品,转载具体要求见文末 编译团队:蒋宝尚,张礼俊 “—— 如今,数据科学家正取代公司里那些带来新客户和收益的销售人员以及交易员,成为金融界最受追捧的人,他们拥有通向行业未来的钥匙。高盛的首席财务官,技术专家Marty Chavez和高盛首席信息官Eli Wiesel的倡议预示了未来。无论是做销售还是交易,公司将越来越多地使用计算机来分析数据。 我们汇总了一些目前在银行和金融领域工作的顶级数据专家的资料。通过关注数据科学家而不是“数据老大”,我们试图了解实际操作数据的人,而不是管理数据科学家的
2022 年 10 月底,爱分析举办了“2022爱分析·银行数字化网络研讨会”。爱分析邀请Kyligence 副总裁周涛进行了题为《创新数据能力,驱动数字化转型:解读银行业趋势和实践》的主题演讲。
导读:SoftServe是全球领先的技术解决方案提供商,近日发布了自己的Big-Data-Analytics-Report,研究显示62%的大中型公司希望在未来的两年内能将机器学习用于商业分析。今年四月,Vanson Bourne为SoftServe进行了这项研究,调查了多个行业的决策者对大数据技术中的风险、挑战和机遇的看法。 该数据显示,大数据分析技术尽管相对较新,仍然有86%的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。 调查对象被问到,与传统系统
“大数据”时代到来了吗? 潮流是一股可笑又可敬的力量:今天,如果打开任何媒体,要是不提“大数据”,恐怕都不好意思出版。这股潮流,铺天盖地,连国家领导人都不例外。问题在于:为什么人人言必称大数据? 数据的价值,随着数据量的几何级数增长,已经不再能够通过传统的图表得以显现,这正是为什么商业智能还没来得及流行,便已被“数据分析”挤下舞台。因为,价值隐藏在数据中,需要数据分析方可释放这些价值。数据分析能力的高低,决定了价值发现过程的好坏与成败。可以说,没有数据分析,“大数据”只是一堆IT库存,成本
由极客时间企业版和培训杂志共同举办的「数字人才蓄能季高端论坛」,邀请华润雪花数字化负责人、阳光保险大学堂校长助理等 5 位大咖“齐聚一堂”,分享数字化战略落地、组织和人才发展实操经验,吸引了上万名观众线上参会。会上,极客邦科技联合创始人 COO 司巧蕾,发布极客时间数字人才培养一体化解决方案,解读了极客时间基于服务数千家客户,提炼出的数字化转型行业观察和最佳实践。以下内容整理自司巧蕾女士此次的演讲。 线上的朋友们大家好,我是来自极客邦科技的司巧蕾,目前负责公司的整体运营和企业服务业务。今天下午几位嘉宾都讲
众所周知,数据分析师有两个发展方向,一个是商业数据分析师,一个就是数据挖掘工程师。
作者:三金 大家好,我是三金 在秋招开始之前就决定要写一篇文章来记录自己的秋招的历程和各种坑,今天终于秋招告一段落了。 从6月30号投出的第一个简历到11月16号收到最后一个offer,一共139天。 其中遇到的各种经验和各种坑希望能和朋友们好好分享一下。 在今年秋招开始前,我还是过分乐观的觉得我自己一定能去互联网大厂。 但是随着秋招的深入,越来越发现今年的艰难,特别是数据分析岗位! 个人认为还是过多优秀的国外留学生因为疫情的原因被迫回国就业导致的,他们原本能去谷歌、苹果等国外一线大厂,回国
各位专家早上好! 欢迎今日早餐会嘉宾:王世今,在美国摩根大通担任风险总监,具有多年管理250亿美金余额高端T&E客户组合的经验,北美大型客户包括美国联合航空、西南航空、Amtrak美国铁路公司、万豪酒店、凯悦酒店等十余个,兼任风险部高管培训委员会委员、摩根大通零售社区数据运营委员会委员、导师计划精英;曾任美国银行信用卡风险部资深副总裁、美国银行亚裔领导组织执行副会长;美国花旗银行高级风险经理,负责Smith Barney、CitiMorgage等特殊金融投资贷款管理;曾任通用财经决策科学高级经理及美国国际集
今年经济形势不好,很多公司又开始打起“经营分析”的大旗,要求“考核财务效益”“推动降本增效”。这一下把很多同学干懵了:财务部门本来不就有财务分析吗?经营分析又和数据分析有啥差异?今天系统的跟大家讲解一下。
【CDA第十二期】深圳7、8月数据分析师培训时间安排 @时间-北京/成都 : 2015年7月18日-8月9日/@北京 or 远程 周六日(共8天) @时间-成都 : 2015年7月18日-8月9日/
【CDA第十二期】深圳7、8月数据分析师培训时间安排 @时间-北京/成都 : 2015年7月18日-8月9日/@北京 or 远程 周六日(共8天) @时间-上海: 2015年7月25日-8月16日/@上海 周六日(共8天) @时间-广州: 2015年7月25日-8月16日/@广州 周六日(共8天) 价格:全程:6900(现场)/ 4900(远程) 大数据,一个热的发烫、众人论调、甚至有些让人厌恶的词眼。是忽悠?是炒作?还是一个难题!聊了3年的“大数据”,似乎每个人都爱上了或被迫关注到这样一个技术的巨大商业
尽管多数人知道大数据技术正为生活带来翻天覆地的变化,也可以为人们提供更多定制化体验,但仍有不少人不知道这项技术将如何造福行业。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 作者|Vala 校对|Shawn “大数据”和“数据分析”的人本因素 机构和组织一直以来通过分析数据来帮助企业制定战略、经营决策,以及进行风险管理。但今天,情况在发生变化,数据的数量、速度、种类在改变,计算机技术也在改变,而这正是让数以万计的商业应用成为可能的技术平台。 然而,技术仅仅是方程的一部分。企业必须将“数据分析”嵌入到由人类参与的商业决策制定过程中,这才是“数据分析”体现其价值的时刻
领取专属 10元无门槛券
手把手带您无忧上云