首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas基础:重命名pandas数据框架列

标签:Python与Excel,pandas 重命名pandas数据框架列有很多原因。例如,可能希望列名更具描述性,或者可能希望缩短名称。本文将介绍如何更改数据框架中的名称。...图4 删除列后,我们可以检查df.head()以确认删除成功–现在只有5列。...我们只剩下以下几列: 图5 我认为有些名字太啰嗦,所以将重命名以下名称: 最新排名->排名 总部所在国家->国家 就像pandas中的大多数内容一样,有几种方法可以重命名列。...我选择不覆盖原始数据框架(即默认情况下inplace=False),因为我希望保留原始数据框架以供其他演示使用。注意,我们只需要传入计划更改名称的列。...例如,你的表可能有100列,而只更改其中的3列。唯一的缺点是,在名称更改之前,必须知道原始列名。 .set_axis()或df.columns,当你的表没有太多列时,因为必须为每一列指定一个新名称!

1.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    webvirtmgr-重命名kvm虚拟机的名称

    之前部署了Webvirtmgr平台管理kvm虚拟机,由于虚拟机在创建时名称是顺便起的,后续在虚拟机上部署了部分业务。为了便于管理,最好将虚拟机的名称重置下。...现在说下如何修改kvm中虚拟机的名称: 比如将vmserver003修改成test-huanqiu,修改方法如下: 1)终端命令行下查看虚拟机 [root@kvm-server ~]# virsh list...qemu]# virsh undefine vmserver003 [root@kvm-server qemu]# virsh define test-huanqiu.xml 若有修改img也将文件重命名下如...: [root@kvm-server qemu]# vim test-huanqiu.xml #将里面使用的img镜像文件名也可以重命名(文件里有镜像文件路径) 6)启动虚拟机 [root@kvm-server...qemu]# virsh start test-huanqiu 7) 重命名后查看(到webvirtmgr平台界面里查看,vmserver003虚拟机名称也已经修改过来了) [root@kvm-server

    1.3K80

    【R语言】数据框按两列排序

    我相信大家经常会使用Excel对数据进行排序。有时候我们会按照两个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二列(score)为他们的考试成绩,第三列(code)为对应的评级。...主要用的是R中的order这个函数。...#读入文件,data.txt中存放的数据为以上表格中展示的数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score...,只需要前面加个负号就可以了 View(file[order(file$Code,-file$Score),]) 下面是按照code升序,然后再按score降序排列的结果,是不是跟Excel处理的结果一样...在R里面我们还可以指定code按照一定的顺序来排列 #按照指定的因子顺序排序,先good,在excellent,最后poor file$Code <- factor(file$Code , levels

    2.3K20

    seaborn可视化数据框中的多个列元素

    seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...,剩余的空间则展示每两个列元素之间的关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。

    5.2K31

    【Python】基于某些列删除数据框中的重复值

    subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

    14.7K30

    R 茶话会(七:高效的处理数据框的列)

    前言 这个笔记的起因是在学习DataExplorer 包的时候,发现: 这我乍一看,牛批啊。这语法还挺长见识的。 转念思考了一下,其实目的也就是将数据框中的指定列转换为因子。...换句话说,就是如何可以批量的对数据框的指定行或者列进行某种操作。...(这里更多强调的是对原始数据框的直接操作,如果是统计计算直接找summarise 和它的小伙伴们,其他的玩意儿也各有不同,掉头左转: 34....R 数据整理(六:根据分类新增列的种种方法 1.0) 其实按照我的思路,还是惯用的循环了,对数据框的列名判断一下,如果所取的列在数据框中,就修改一下其格式,重新赋值: data(cancer, package...1.67 37.7 56.7 1.15 8.62 37.9 如果你问NA 值怎么办~ 我会说,加个什么,加个什么,加个filter(n() > 1) 试试吧~ 其他处理 自定义分组后名称

    1.5K20

    R语言第二章数据处理④数据框排序和重命名目录

    目录 R语言第二章数据处理①选择列 R语言第二章数据处理②选择行 R语言第二章数据处理③删除重复数据 R语言第二章数据处理④数据框排序和重命名 =============================...=================== 这一篇主要介绍如何通过一个或多个列(即变量)的值对数据中的行进行重新排序。...将列Sepal.Length重命名为sepal_length,将Sepal.Width重命名为sepal_width: my_data %>% rename( sepal_length...= Sepal.Length, sepal_width = Sepal.Width ) 使用Rbase函数重命名列 要将列Sepal.Length重命名为sepal_length,过程如下...: 使用函数名称()或colnames()获取列名称 # Rename column where names is "Sepal.Length" names(my_data)[names(my_data

    1.5K50

    如何快速重命名Gff3文件中的基因ID名称

    在使用EVM或者maker进行基因注释后,通常的下一个需求就是对注释的gff的ID进行重命名,一般我们会按照物种的名称,按照基因在染色体的位置进行命名。这个该如何实现呢?...gff文件除gff1以外均由9列数据组成,前8列在gff的3个版本中信息都是相同的,只是名称不同: 第9列attributes的内容存在很大的版本特异性。...type:类型,此处的名词是相对自由的,建议使用符合SO惯例的名称(sequenceontology),如gene,repeat_region,exon,CDS等。...对于编码蛋白质的CDS来说,本列指定下一个密码子开始的位置。可以是0、1或2,表示到达下一个密码子需要跳过的碱基个数。 attributes:属性。...另外,在基因结构注释gff文件中中,基因包含mRNA,mRNA包含exon, CDS, UTR等信息,同时在注释文件中除基因行外,其他行在第9列会通过Parent指明该行从属的上一级ID,也就是一个基因的

    6.8K21

    学徒讨论-在数据框里面使用每列的平均值替换NA

    最近学徒群在讨论一个需求,就是用数据框的每一列的平均数替换每一列的NA值。但是问题的提出者自己的代码是错的,如下: ? 他认为替换不干净,应该是循环有问题。...#我好像试着写出来了,上面的这个将每一列的NA替换成每一列的平均值。 #代码如下,请各位老师瞅瞅有没有毛病。...:我是这么想的,也不知道对不对,希望各位老师能指正一下:因为tmp数据框中,NA个数不唯一,我还想获取他们的横坐标的话,输出的结果就为一个list而不是一个数据框了。...a=1:1000 a[sample(a,100)]=NA dim(a)=c(20,50) a # 按照列,替换每一列的NA值为该列的平均值 b=apply(a,2,function(x){ x[is.na...,就数据框的长-宽转换!

    3.6K20

    R语言第二章数据处理⑤数据框列的转化和计算目录正文

    正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...Mutate_at()/ transmutate_at():将函数应用于使用字符向量选择的特定列 Mutate_if()/ transmutate_if():将函数应用于使用返回TRUE的谓词函数选择的列...tbl:一个tbl数据框 funs:由funs()生成的函数调用列表,或函数名称的字符向量,或简称为函数。predicate:要应用于列或逻辑向量的谓词函数。...转换特定列 mutate_at():转换按名称选择的特定列: my_data2 %>% mutate_at( c("Sepal.Length", "Petal.Width"),

    4.2K20

    按照列筛选数据框不容易那么按照行就容易吗

    前面我出过一个考题,是对GEO数据集的样本临床信息,根据列进行筛选,比如: rm(list=ls()) options(stringsAsFactors = F) library(GEOquery)...eset=getGEO('GSE102349',getGPL = F) pd=pData(eset[[1]]) 就会下载一个表达矩阵,有113个病人(行),记录了57个临床信息(列),很明显,有一些临床信息列是后续的数据分析里面...(主要是分组)没有意义的,病人总共时间日期,所有的病人可能都是一样的。...那么就需要去除,一个简单的按照列进行循环判断即可!...就是仍然是需要去除无效行,就是去掉临床信息为N/A、Unknown、Not evaluated的行,需要检查全部的列哦~ 给一个参考答案 pd=pd[apply( apply(pd,2,function

    69810

    SQL 将多列的数据转到一列

    假设我们要把 emp 表中的 ename、job 和 sal 字段的值整合到一列中,每个员工的数据(按照 ename -> job -> sal 的顺序展示)是紧挨在一块,员工之间使用空行隔开。...5000 (NULL) MILLER CLERK 1300 (NULL) 解决方案 将多列的数据整合到一列展示可以使用 UNION...使用 case when 条件1成立 then ename when 条件2成立 then job when 条件3成立 then sal end 可以将多列的数据放到一列中展示,一行数据过 case...when 转换后最多只会出来一个列的值,要使得同一个员工的数据能依次满足 case when 的条件,就需要复制多份数据,有多个条件就要生成多少份数据。...使用笛卡尔积可以"复制"出多份数据,再对这些相同的数据编号(1-4),编号就作为 case when 的判断条件。

    5.4K30
    领券