爬取链家网、贝壳网的各类房价数据(小区数据,挂牌二手房, 出租房,新房)。 支持北京上海广州深圳等国内21个主要城市;支持Python2和Python3; 基于页面的数据爬取,稳定可靠; 丰富的代码注
机器学习之初,可以在各种开源数据集玩各种模型、玩各种参数,机器学习工程被称为“炼丹”。那时候,数据是规则,目标是明确,世界是如此简单和令人振奋。虽然也有一些杂音划耳而过,“机器学习算法的90%都是数据处理”,“数据清洗”、“数据增广”……直到自己进行AI算法解决实际工程问题,原来恩达老师讲的都是真的——算法工程的大部分实践都和数据“大泥巴”搅合在一起,数据要对齐、样本不平衡、数据标定等等。
明星的一条微博的点赞数可能有几十万,甚至百万以上。那么这个「点赞功能」(会记录谁点了赞),新浪微博的数据库是如何设计的呢?
我们经常讲:研发人员有两只眼睛,一只是监控平台,另一只是日志平台。在对性能和高可用讲究的场景里,监控平台的重要性再怎么强调也不过分。
目前内测阶段免费使用,无需审核,开通服务即用。诚邀您点击 申请页面 参与内测体验!
监控服务Zabbix 一、Zabbix简介 Zabbix是一个企业级的开源分布式监控解决方案,由C语言编写而成的底层架构(server端和agent端),由一个团队持续维护更新,软件可以自由下载使用,
最近经常在与客户不断交流,每次碰撞总会感觉到火花,例如:某国企信息化用了近20款公有云服务、近20款业务系统的数据库用了同一个物理库、公有云的产品稳定性得到了进一步认可、客户对信息化建设的务实。细细地品味、仔细地思考,今天我们来看一下越来越流行的日志服务在数据中的作用。
Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理;
2019年8月30日,《信息安全技术 数据安全能力成熟度模型》(GB/T 37988-2019)简称DSMM(Data Security Maturity Model)正式成为国标对外发布,并已于2020年3月起正式实施。
作为一个 3 月经验用了 3 年的半吊子前爬虫程序员,难免有在采集数据时不想写代码的时候,毕竟轮子天天造,requests.get 都写腻了写烦了。
(1)数据分析是为了验证假设的问题,需要提供必要的数据验证。在数据分析中,分析模型构建完成后,需要利用测试数据验证模型的正确性。
一般的我们如果需要搭建服务器监控平台,需要去读取服务器实时的内存信息,CPU状态等等,就正如我们上一篇使用python从零搭建服务器监控系统一样。如果大家没看过之前的那篇文章,推荐大家去看看。里面有搭建监控系统的整个思路。总的来说就是数据采集,数据存储,数据可视化这三个方面。
本MongoDB模板采集数据,通过mongo命令,执行内置的函数获取监控数据,修复了不支持认证的问题。
上述文件中product文件夹是定制好抓取电子产品价格的数据采集器,MySQL建立数据库见文件
在数据库运维过程中,用户或者DBA经常会因为管理平台监控面板无法配置,或者监控模板固化,监控模板中没有所关注的指标项,而不得已弃用部分管理平台,进而自建监控或者基于自身业务自定义一批运维监控脚本,来实现数据库或者主机的多样化监控需求。
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
继上期数据中台技术汇栏目发布DataSimba——企业级一站式大数据智能服务平台,本期介绍DataSimba的数据采集平台。
数据分析与挖掘是对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,整个分析过程会有以下几个步骤: 1. 确定目标 首先,要明确目标是什么?比如一个消费品公司有千万级别的会员,那如何对会员的有一个清晰的认识。哪些是活跃的会员?哪些已经流失?会员的消费周期是什么样子?不同的会员偏好的产品特征是什么?流失的会员有没有什么办法唤醒回头再次? 通过问问题,确定分析目标,明确大目标,拆解成各个小目标。 以上面的例子,其实是想做关于做会员画像,实现精准营销,这个是大目标。活跃会
数据储存技术、网络技术的迅猛发展,为大数据时代的到来准备了物质基础。物联网的本质就是更多采集数据的入口和节点;云计算培养了服务的商业模式和集中建设降低单位计算和存储成本。大数据在如此的社会背景下产生并逐渐发展。接下来,我们具体聊一下大数据的方法与技术。
我们知道zabbix在监控界占有不可撼动的地位,功能强大。但是对容器监控显得力不从心。为解决监控容器的问题,引入了prometheus技术。
Zabbix是一个企业级的开源分布式监控解决方案,由一个国外的团队持续维护更新,软件可以自由下载使用,运作团队靠提供收费的技术支持赢利。 Zabbix官方网站:http://www.zabbix.com
用火车头采集发布到本地的时候,发现文件一直为空,打开“本地编辑任务采集数据”查看,标题和内容都有采集到火车头数据库了,但发布没有成功。在想是什么原因导致火车头本地发布没有成功呢?考虑到采集的内容是中文,会不会发布默认模板的编码问题呢?
本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
<metric name>{<label name>=<label value>, ...},
在公有云的数据库产品清单里,近年出现了一个新的名词“时序数据库”。感觉数据库的产品已经不少了,时序数据库的用途是什么?为什么会诞生该产品?我们今天一起来看一下!
浏览器页面采集: 主要是收集页面的 浏览日志(PV/UV等) 和 交互操作日志(操作事件)。
大家可能都比较熟悉python这门技术语言,确实在大数据火起来之后python的热度一度高涨,不可否认的是python在数据采集这块真的很好用,很方便。
由于Elastic X-Pack是面向收费的,所以我们不妨也把X-Pack放进去,看看哪些是由X-Pack带来的,在阅读官网文档时将方便你甄别重点:
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。
今天突然想起来把数据库和图片都设置成远程,以节省主程序所在服务器的空间和流量占用,
Telegraf 是实现 数据采集 的工具。Telegraf 具有内存占用小的特点,通过插件系统开发人员可轻松添加支持其他服务的扩展。
这个名为“chinese-poetry”、号称“最全中文诗歌古典文集数据库”的项目,今日登顶GitHub热榜第一。
上一篇介绍了,前端为什么要有监控系统?前端监控系统的意义何在?有小伙伴看完后留言想听些详细的实现。那么本篇我们就开始介绍前端监控如何实现。
Zabbix是一个企业级的高度集成开源监控软件,提供分布式监控解决方案。可以用来监控设备、服务等可用性和性能。
小伙伴们选择大数据平台,想必是传统的关系型数据库无法满足业务的存储计算要求,面临着海量数据的存储和计算问题。
数据库作为数据源,在很多组态软件中使用非常多,指定数据库类型,填写好数据库连接信息,指定对应的数据库表和字段,采集间隔,程序按照采集间隔自动采集数据库数据,绑定到界面上的控件赋值显示即可。使用数据库作为数据源,有个非常大的好处就是不用去写额外的通信代码,也与对方的什么语言什么平台无关,不会有扯皮的事情发生,例如通信协议不规范不准确导致解析不对的情况啊,这样就支持任意的语言和平台啦,毕竟有数据库这个中间载体过渡,而且任何语言任何平台都会有数据库,都兼容,所以采用数据库作为数据源不失为一种很好的方案,可以专注于软件功能的持续集成。
点击关注公众号,Java干货及时送达 来源:www.cnblogs.com/xiaoyuxixi/p/12235979.html 新公司要上监控,面试提到了 Prometheus 是公司需要的监控解决方案,我当然是选择跟风了。 之前主要做的是 Zabbix,既然公司需要 Prometheus,那没办法,只能好好对比一番,了解下,毕竟技多不压身。 但稍稍深入一点,我就体会到了 Prometheus 的优点,总结一下这两种监控方式。 两种监控工具的历史简介 Prometheus Kubernetes 自从
Prometheus 本身只支持单机部署,没有自带支持集群部署,也就不支持高可用以及水平扩容,在大规模场景下,最让人关心的问题是它的存储空间也受限于单机磁盘容量,磁盘容量决定了单个 Prometheus 所能存储的数据量,数据量大小又取决于被采集服务的指标数量、服务数量、采集速率以及数据过期时间。在数据量大的情况下,我们可能就需要做很多取舍,比如丢弃不重要的指标、降低采集速率、设置较短的数据过期时间(默认只保留15天的数据,看不到比较久远的监控数据)。
一直以来,我们会在项目中,使用 APM 去监控应用的状况,分析性能等,这些工具很有效,而且不侵入业务,不需要埋点。 然而,有些需求,是 APM 的监控满足不了的,比如 *应用业务指标 *。 监控模式 目前,采集指标有两种方式,一种是『推』,另一种就是『拉』: 推的代表有 ElasticSearch,InfluxDB,OpenTSDB 等,需要你从程序中将指标使用 TCP,UDP 等方式推送至相关监控应用,只是使用 TCP 的话,一旦监控应用挂掉或存在瓶颈,容易对应用本身产生影响,而使用 UDP 的话,虽然
今天谈下大数据平台构建中的数据采集和集成。在最早谈BI或MDM系统的时候,也涉及到数据集成交换的事情,但是一般通过ETL工具或技术就能够完全解决。而在大数据平台构建中,对于数据采集的实时性要求出现变化,对于数据采集集成的类型也出现多样性,这是整个大数据平台采集和集成出现变化的重要原因。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,和架构,你不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
DataBand(数据帮),快速采集清洗,数据分析,预测分析,人工智能赋能服务,是一站式的大数据平台。我们致力于通过提供智能应用程序、数据分析和咨询服务来提供最优解决方案
本发明公开了一种语音情感和面部表情双模态识别系统,包括情感数据的输入及其预处理模块、情感特征提取模块以及特征融合情感识别模块;情感数据的输入及其预处理模块,用于选择和建立所使用的情感数据库,根据不同数据库的数据特征以及不同模态数据的特性选择预处理方法;情感特征提取模块,用于表情特征提取和语音特征提取,表情特征包括LBP特征;本发明在保留整体信息完整性情况下,考虑了不同模态特征,不同特征种类间的差异性,增强了特征层融合的性能,在建立大数据和神经网络模型等基础上,通过数据采集和标注建立训练数据库,能快速分析和筛查精神病患者病情。
【摘要】基于边缘计算研究传感器高频次采集数据的传输、存储和处理技术架构,提出了传感器高频采集设备的软硬件模块组成,并形成通用数据分析处理软件框架,以长时间综合分析多个高频采集设备的数据,为物联网应用对大规模传感器数据进行挖掘处理和分析判决提供基础。
日志是大数据平台重要数据来源之一,应用程序日志一方面记录各种程序执行状况,一方面记录用户的操作轨迹。Flume 是日志收集常用的工具。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
Zabbix 是一个高度集成的网络监控解决方案,可以提供企业级的开源分布式监控解决方案,由一个国外的团队持续维护更新,软件可以自由下载使用,运作团队靠提供收费的技术支持赢利。
领取专属 10元无门槛券
手把手带您无忧上云