作者 CDA 数据分析师 大数据抽取转换及加载过程(ETL)是大数据的一个重要处理环节,Extract 即是从业务数据库中抽取数据,Transform 即是根据业务逻辑规则对数据进行加工的过程,
大数据与传统数据相比的主要特点可以概括为:数据量“大”、数据类型“复杂”、数据价值“无限”。
问题导读 1.如何判断大数据问题是否需要大数据解决方案? 2.如何评估大数据解决方案的可行性? 3.可通过大数据技术获取何种洞察? 4.是否所有大数据都存在大数据问题? 接上篇: 大数据架构和模式(一): 大数据分类和架构简介 简介 在确定投资大数据解决方案之前,评估可用于分析的数据;通过分析这些数据而获得的洞察;以及可用于定义、设计、创建和部署大数据平台的资源。询问正确的问题是一个不错的起点。使用本文中的问题将指导您完成调查。答案将揭示该数据和您尝试解决的问题的更多特征。 尽管组织一般情况对需要分
本文作者:陈宏武,2013年华中科技大学毕业,之前从事搜搜网页搜索的下载调度,数据质量优化工作。目前在内部搜索平台部外站数据组从事网络爬虫、下载调度、页面抽取及数据整合相关工作。 “你百度一下会死啊”?答:“会”。 最近的WZX事件闹得沸沸扬扬,不由得引起我们思考,如果WZX能获取更多更全的相关数据,如synovial sarcoma(滑膜肉瘤) 的DC CIK免疫疗法临床现状、武警二院属于莆田系等,也许当前的医疗手段依然无法挽回他的生命,但是他的求医体验应该不会是现在这样。 大数据是什么?个人认为
作者: Divakar Mysore等 来源: DeveloperWorks 摘要:本文介绍一种评估大数据解决方案的可行性的基于维度的方法。通过回答探索每个维度的问题,您可以通过自己对环境的了解来确定某个大数据解决方案对您是否适合。仔细考虑每个维度,就会发现有关是否到了改进您的大数据服务的时候的线索。 简介 在确定投资大数据解决方案之前,评估可用于分析的数据;通过分析这些数据而获得的洞察;以及可用于定义、设计、创建和部署大数据平台的资源。询问正确的问题是一个不错的起点。使用本文中的问题将指导您完成调查
在企业数据建设过程中,大数据治理受到越来越多的重视。从企业数据资产管理和提升数据质量,到自服务和智能化的数据应用,大数据治理的内容在不断地发展和完善,其落地实施的过程中会遇到各种各样的难题和挑战。本篇文章通过分析大数据治理建设中的沟沟坎坎,总结出了大数据治理需要具备的能力和关键技术。 本文目录: 一、困难重重却充满光明的大数据治理发展之路 二、大数据治理技术需要不断革新 三、如何选择合适的大数据治理工具? 四、总结 一、困难重重却充满光明的 大数据治理发展之路 传统数据治理一直无法逃脱的魔咒 大数据治理从建
互联网的业务无外乎线上OLTP场景和线下OLAP场景,这两种场景,数据量增大后,我们应该分别怎么应对呢。
传统企业在数字化转型中,大数据分析技术对数据有效的展示能够极大提高对信息的洞察力。目前虽然已有大量的大数据可视化工具可供使用且很多大数据企业也正在使用这些工具,但在企业中能有效使用大数据可视化工具的还是很少。西安弈聪信息技术有限公司(简称:弈聪软件)CEO卓建超认为,虽然大数据可视化分析技术已经得到了深入发展,企业对于数据可视化的投资和意识都在不断增加,但是可视化工具的长期采纳以及企业的投资回报依然很难实现。现在虽然大数据可视化仍然具有巨大的前景,且近十年来它也一直是一门主流学科,但目前它依然不够成熟。
我在一次社区活动中做过一次分享,演讲题目为《大数据平台架构技术选型与场景运用》。在演讲中,我主要分析了大数据平台架构的生态环境,并主要以数据源、数据采集、数据存储与数据处理四个方面展开分析与讲解,并结合具体的技术选型与需求场景,给出了我个人对大数据平台的理解。本文是演讲内容的第一部分。 大数据平台是一个整体的生态系统,内容涵盖非常丰富,涉及到大数据处理过程的诸多技术。在这些技术中,除了一些最基础的平台框架之外,针对不同的需求场景,也有不同的技术选择。这其中,显然有共性与差异性的特征。若从整个开发生命周期的角
数据可视化,是关于数据视觉表现形式的科学技术研究。数据可视化是指以图形或图表格式通过人工或以其他方式组织和显示数据,以使受众能够更清楚地查看分析结果、简化正在使用的数据中的复杂性、了解并掌握正在使用的数据制作方法。
大数据是指海量数据或巨量数据,其规模巨大到无法通过目前主流的计算机系统在合理时间内获取、存储、管理、处理并提炼以帮助使用者决策。
2018年12月23日看到了一片文章,标题是《人工智能一定需要大数据吗?未必!》,原文链接:https://mp.weixin.qq.com/s/DkMNX6NHsuCeO_i-20lUMA。真的未必么,这中间是不是还有什么没有说清楚的东西呢?文中的观点基本上就是标题的说法。但是,未必与否,这里是需要辨证地看的。
摘 要 简要介绍了网络大数据的概念,分析了运营商网络大数据的构成及带来的挑战,并从网络大数据存储与技术平台、感知与获取、清洗与提炼三个方面对运营商网络大数据技术进行解析,最后对运营商的网络大数据机遇进行了展望。 关键词 大数据 网络大数据 数据清洗 数据存储 数据挖掘 1 引言 近年来,随着互联网技术迅猛发展和智能终端的大量普及,数据呈现爆发式增长,给许多行业带来了严峻挑战和巨大机遇,整个信息社会已经进入了大数据时代。一般意义上,大数据是指无法在一定时间内用常规机器和软硬件工具进行感知、获取、管理、
数据采集的设计,几乎完全取决于数据源的特性,毕竟数据源是整个大数据平台蓄水的上游,数据采集不过是获取水源的管道罢了。
随着全球数字化、5G通信技术的成熟、互联网应用于各行各业,累积的数据量越来越大,越来越多企业、行业和国家发现,可以利用类似的技术更好地服务客户、发现新商业机会、扩大新市场以及提升效率,由此引发了一场新的技术革命.
摘 要 简要介绍了网络大数据的概念,分析了运营商网络大数据的构成及带来的挑战,并从网络大数据存储与技术平台、感知与获取、清洗与提炼三个方面对运营商网络大数据技术进行解析,最后对运营商的网络大数据机遇进行了展望。 关键词 大数据 网络大数据 数据清洗 数据存储 数据挖掘 3 运营商网络大数据技术解析 网络大数据技术主要解决三个方面的问题,包括数据如何获取、数据如何处理以及数据如何应用。为解决这三个问题,需具备一个平台和三个能力,即数据存储与计算平台、数据感知与获取能力、数据清洗与提炼能力
作者 | 宋文欣 以 Hadoop 为中心的大数据生态系统从 2006 年开源以来,一直是大部分公司构建大数据平台的选择,但这种传统选择随着人们的深入使用,出现的问题也越来越多,比如:数据开发迭代速度不够快、集群资源利用效率过低、新的开发工具集成非常复杂等。这些问题已经成为困扰企业数字化转型加速迭代和升级的主要障碍。 而传统大数据平台通常是以 Hadoop 为中心的大数据生态技术。一个 Hadoop 集群包含 HDFS 分布式文件系统和以 Yarn 为调度系统的 MapReduce 计算框架。围绕 H
大企业or小企业 对于中小企业在小型和个人数据集上使用大数据技术,我能看到大量优势,但是对它们而言也有很多理由来关注一下大数据本身。最近的一项调查中,我们发现这的确是小企业优先考虑的问题,但首先,究竟什么是大数据? SAP将大数据定义为“一个用来形容数据的指数增长和可用性,包括其结构化和非结构化的流行词汇。并且大数据对企业(和社会)可能像互联网一样重要。为什么?因为更多的数据可能会导向更精确的分析。” 从可获取的早期描述中,高纳德公司把大数据定义为“3V,即大数量(Volume)、快速度(Vel
同程旅行大数据集群从 2017 年开始容器化改造,经历了自研调度 docker 容器 ,到现在的云舱平台, 采用 Kubernetes 调度编排工具管理大数据集群服务。
一、大数据风控——互联网金融的命脉 近几年,大数据已经撼动了世界的方方面面,从商业科技到医疗、政府、教育、经济、人文以及社会其他各个领域;数据成了有价值的公司资产、重要的经济投入和新型商业模式的基石。 有人曾把大数据比喻成“新时代的石油;业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于生活中的每个角落。试图用数据去解决问题、改善福利,并且促成新的经济繁荣等等。以上这些在互联网金融业尤为突出。 (一)大数据风控已成为互联网金融核心环节 早在1980年,著名未来
回顾整个数据平台的发展,在每一个阶段所有数据类应用都会或多或少的都会有数据质量的困扰,数据标准更是难以落地。数据管理由于难度大,涉及方面多逐步成为重要不紧急的事情。 在海量复杂数据的场景下,如果没有有效的管理,那么大数据只能成为数据的沼泽。企业在大数据的投资只能换来低质量的大量无效数据,从而极大的影响企业的大数据战略。在大数据的时代,大家都在重视数据存储和大数据相关技术的同时,都开始注重建设数据管理能力。 传统的数据管理对于企业来确实较为复杂,虽然方法论没有问题,但是对于企业来说往往望而生畏,比如组织架构庞
1.大数据的概念 麦肯锡公司对大数据的定义: 大数据是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。 维基百科对大数据的定义: 大数据是指利用常用软件工具来获取、管理和处理数据所耗时间超过可容忍时间限制的数据集。这并不是一个精确的定义,因为无法确定常用软件工具的范围,可容忍时间也是个概略的描述。
选文:Selene Wang 翻译:Wendy Zhou, 田桂英 校对:Selene Wang ◆ ◆ ◆ 序言 当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。 在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分
软件和服务的大数据分析市场收入预计将从2018年的 42B增长到2027年的 103B,复合年增长率(CAGR)为10.48%。这就是为什么,大数据分析认证是业内最全神贯注的技能之一。 在这个“大数据分析应用领域”文章中,我将带您进入各个行业领域,在这里我将解释大数据分析如何使它们发生革命性变化。
问题导读 1.本文对大数据做了哪些分类? 2.对数据进行分类后,如何将它与合适的大数据模式匹配? 如何将大数据分为不同的类别 大数据问题的分析和解决通常很复杂。大数据的量、速度和种类使得提取信息和获得
随着各行业信息化速度的加快,不同类型的数据皆呈现出爆发性的增长并质变成大数据。随着海量、细致的新数据源的不断呈现,大数据在运营、策划、营销等方面的应用,得到不同层面的技术指标,产生系列的报表并反馈在生产和运营中,大数据价值的挖掘应用成为智慧企业发展的所迫切需要迈出的重要一步。
虽然制造业是一个十分传统的行业,但是这一行业依然能够从大数据中受益颇多。由于获得了新的分析工具和更好的收集信息的方式,制造业正在不断发展。 大数据如何改变制造业? 以下是大数据正在重塑制造业的几种方式
大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事。 下图的谷歌趋势曲线向我们展示了在过去
原生对象存储服务的索引是扁平化的组织形式,在传统文件语义下的 List 和 Rename 操作性能表现上存在短板。腾讯云对象存储服务 COS 通过元数据加速功能,为上层计算业务提供了等效于 HDFS 协议的操作接口和操作性能。
《中国大数据技术与产业发展报告(2014年)》针对2015年度大数据发展做了十大预测,他们分别是:
疑惑一 大数据与云计算有何关系? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。 大数据的4V特点:Volume(大量)、Velocity(高速
徐蓓,腾讯云容器专家工程师,10年研发经验,7年云计算领域经验。负责腾讯云 TKE 大数据云原生、离在线混部、Serverless 架构与研发。 1 方案介绍 大数据处理技术现今已广泛应用于各个行业,为业务解决海量存储和海量分析的需求。但数据量的爆发式增长,对数据处理能力提出了更大的挑战,同时对时效性也提出了更高的要求。实时分析已成为企业大数据分析中最关键的术语,这意味企业可将所有数据用于大数据实时分析,实现在数据接受同时即刻为企业生成分析报告,从而在第一时间作出市场判断与决策。 典型的场景如电商大促和金
当前大数据价值变现概念很热,但很多人会觉得是炒作,很多有数据的企业也迟迟未动。究其原因,大家对这个东西还是不熟悉,觉得商业模式不成熟,加上充斥着大量关于大数据隐私安全的争论,就更犹豫不决了。那么如
关系数据库是最常见的数据存储方案,SQL 自然也成为数据处理的第一选择。但随着企业级应用越来越复杂,使用 SQL 实现数据运算和处理也开始面临许多架构层面的严重问题。复杂的 SQL(存储过程)很难移植、计算处理都压进数据库会造成数据库负担沉重而成为整个应用的瓶颈、被多应用共享的数据库容易导致应用间强耦合等等。所以,越来越多的现代应用开始采用其它技术来处理数据。
<数据猿导读> 智能交通在生活中应用很广,如我们平时所见的城市公共交通采用一卡通的便捷快速刷卡换乘、互联网、电话等多种购票方式,这些只是智能交通的初级阶段呈现。未来,你可以幻想一下,坐在无人驾驶的汽车
【摘要】首先要强调一点,本文讨论的重点是大数据“应用”,尤其是针对企业营销的大数据应用,对于大数据技术本文会有少量涉及,但是对于大数据工程、大数据科学,这不是这篇文章关注的范畴。 大数据营 销应用,在大数据带来的各类应用中,恐怕是品牌企业最关注的一个方向。被许多媒体报道过的ZARA的案例,就是一例典型的基于大数据获取、分析,完成经营 及营销决策的案例。这个案例让很多企业认识到,通过大数据了解客户的喜好趋势、提高利润空间,可能是一个非常有效的途径。但是我们要知道,因为大数据很 大,从关注到真正做出适当的投入和
《中国大数据技术与产业发展报告(2014年)》针对2015年度大数据发展做了十大预测,他们分别是: 趋势一、结合智能计算的大数据分析成为热点 大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。要达到这一目标,需要提升对数据的认知计算能力,让计算系统具备对数据的理解、推理、发现和决策能力,其背后的核心技术就是人工智能。近些年,人工智能的研究和应用又掀起新高潮,
大数据已经逐渐普及,大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
Google发表了两篇论文:描述如何以分布式方式存储海量数据的Google文件系统和描述如何处理大规模分布式数据的MapReduce:大型集群上的简化数据处理。受这两篇论文的启发,DougCutting实现了这两篇基于OSS(开源软件)的论文的原则,Hadoop诞生了。
大数据无疑是目前IT领域的最受关注的热词之一。几乎凡事都要挂上点大数据,否则就显得你OUT了。相信大多数人都能顺口说出大数据的四个特点:容量大,多样化,速度快以及高价值。但随着人们对于大数据的逐渐了解
背景介绍 原生对象存储服务的索引是扁平化的组织形式,在传统文件语义下的 List 和 Rename 操作性能表现上存在短板。腾讯云对象存储服务 COS 通过元数据加速功能,为上层计算业务提供了等效于 HDFS 协议的操作接口和操作性能。 (一)什么是元数据加速器? 元数据加速功能是由腾讯云对象存储(Cloud Object Storage,COS)服务提供的高性能文件系统功能。 元数据加速功能底层采用了云 HDFS 卓越的元数据管理功能,支持用户通过文件系统语义访问对象存储服务,系统设计指标可以达到2.4
【新智元导读】近日,微软 AI 首席科学家邓力加盟对冲基金公司 Citadel 再次引发了人们对于机器学习技术应用于金融投资领域的关注。J.P.摩根最新的280 页研究报告《大数据和 AI 策略——面向投资的机器学习和另类数据方法》,极为详尽地梳理、评述、预测了对冲基金和投资者使用机器学习技术利用、分析另类数据的现状与未来,对于一切关注这一新兴大趋势的人们、一切投资者都有重要的借鉴意义。我们节选介绍了这一长篇报告,并提供了报告的下载。 大数据,特别是另类数据集的构建和利用,已经极大地改变了投资领域的面貌。
工信部的数据显示:“中国制造业约占整个世界制造业20%的份额,在500余种主要产品中,我国有220多种产量位居世界第一。2014年,我国共有100家企业入选‘财富世界500强’,其中制造业企业占56家”。
作者:吴军 或许你已经感受到了,大数据和人工智能正在对我们的生活产生影响。在朋友们留言中,不乏有人对未来表达了担忧。你是否对你自己所处的世界洞若观火?如果不是,那么就来听听吴军博士怎么说。 计算机在解
NoSQL 一种称为NoSQL的新形式的数据库(Not Only SQL)已经出现,像Hadoop一样,可以处理大量的多结构化数据。但是,如果说Hadoop擅长支持大规模、批量式的历史分析,在大多数情况下(虽然也有一些例外),NoSQL 数据库的目的是为最终用户和自动化的大数据应用程序提供大量存储在多结构化数据中的离散数据。这种能力是关系型数据库欠缺的,它根本无法在大数据规模维持基本的性能水平。 在某些情况下,NoSQL和Hadoop协同工作。例如,HBase是流行的NoSQL数据库,它仿照谷歌的Big
近年来大数据技术的快速发展深刻改变了我们的生活、工作和思维方式。大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:第一,人们处理的数据从样本数据变成全部数据;第二,由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;第三,人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相关关系。事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。笔者认为,大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智
数据猿导读 随着大数据处理技术的逐步成熟和广泛应用,金融机构根据业务发展需要,开始尝试采用大数据和复杂网络技术来建立便捷性、直观性和快速反应的企业关联查询生产系统的研究。 本篇案例为数据猿推出的大型“
前面已经给大家讲了《从0到1搭建大数据平台之数据采集系统》、《从0到1搭建大数据平台之调度系统》,今天给大家讲一下大数据平台计算存储系统。大数据计算平台目前主要都是围绕着hadoop生态发展的,运用HDFS作为数据存储,计算框架分为批处理、流处理。
一般情况下,大数据平台指的是使用了Hadoop、Spark、Storm、Flink、Blink等这些分布式、实时或者离线计算框架,并在上面运行各种计算任务的平台。
领取专属 10元无门槛券
手把手带您无忧上云