逻辑回归是一种用于解决分类问题的统计学方法,尤其适用于二分类问题。在本文中,我们将使用Python来实现一个基本的逻辑回归模型,并介绍其原理和实现过程。
01 引言 欢迎关注 算法channel ! 交流思想,分享知识,找到迈入机器学习大门的系统学习方法,并在这条道路上不断攀登,这是小编创办本公众号的初衷。 本公众号会系统地推送基础算法及机器学习/深度学习相关的全栈内容,包括但不限于:经典算法,LeetCode题目分析,机器学习数据预处理,算法原理,例子解析,部分重要算法的不调包源码实现(现已整理到Github上),并且带有实战分析,包括使用开源库和框架:Python, Numpy,Pandas,Matplotlib,Sklearn,Tensorflow等
最近,有一份很全面的算法资源在GitHub上火了,不仅有相应的原理介绍和实现代码,还提供了Demo,目前GitHub上标星已经突破2900星。
一、算法介绍 Logistic regression (逻辑回归)是一种非线性回归模型,特征数据可以是连续的,也可以是分类变量和哑变量,是当前业界比较常用的机器学习方法,用于估计某种事物的可能性,主要的用途: 分类问题:如,反垃圾系统判别,通过计算被标注为垃圾邮件的概率和非垃圾邮件的概率判定; 排序问题:如,推荐系统中的排序,根据转换预估值进行排序; 预测问题:如,广告系统中CTR预估,根据CTR预估值预测广告收益; 这个世界是随机的,所以万物的发生都可以用可能性或者几率(Odds)来表达。“几率”指的是
希望时间的流逝不仅仅丰富了我们的阅历,更重要的是通过提炼让我们得以升华,走向卓越。 1Tags 排序算法 链表 树 图 动态规划 Leetcode Python Numpy Pandas Matplotlib 数学分析 线性代数 概率论 数据预处理 机器学习 回归算法 分类算法 聚类算法 集成算法 推荐算法 自然语言处理 Kaggle Tensorflow
二面面试官来了。是个算法大佬。是个专门做算法的。直接手出题,他说时间不多,就让我说思路。
随机森林(Random Forest)是一种强大的集成学习算法,它通过组合多个决策树来进行分类或回归。在本文中,我们将使用Python来实现一个基本的随机森林分类器,并介绍其原理和实现过程。
应用方式:用于研究一个连续因变量与一个或多个自变量之间的线性关系。通过对数据进行拟合,确定自变量对因变量的影响程度(系数),并可以用来预测给定自变量值时因变量的期望值。例如,在经济学中,用于分析GDP与投资、消费、出口等因素的关系;在市场营销中,预测销售额与广告支出、价格、季节因素等的关系。
决策树是一种常用的机器学习算法,它可以用于分类和回归任务。在本文中,我们将使用Python来实现一个基本的决策树分类器,并介绍其原理和实现过程。
逻辑回归是一种常用的分类算法,尤其适用于二分类问题。本文将介绍逻辑回归的原理、实现步骤以及如何使用Python进行逻辑回归的编程实践。
逻辑回归是解决二分类问题的监督学习算法,用来估计某个类别的概率。其直接预测值是表示0-1区间概率的数据,基于概率再划定阈值进行分类,而求解概率的过程就是回归的过程。
回归就是发现变量之间的关系,也就是求回归系数,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。经常用回归来预测目标值。回归和 分类同属于监督学习,所不同的是回归的目标变量必须是连续数值型。 logistic 回归的主要思想是根据现有的数据对分类边界线建立回归公式,以此进行分类。
K近邻(K-Nearest Neighbors,简称KNN)是一种简单而有效的分类和回归算法,它通过比较新样本与训练样本的距离来进行预测。在本文中,我们将使用Python来实现一个基本的K近邻算法,并介绍其原理和实现过程。
上回我们带大家使用Python实现逻辑回归来辨别一只猫的图片,大家应该隐约感觉到逻辑回归的神奇了,不免好奇为什么它可以做识别呢?这就是回归的强大能力——分类!回归模型可以拟合数据集的输出,说人话就是,这个算法会“模仿”你给的数据集,然后可以预判啊,分类等等。
假设预测的变量y是离散的值,需要使用逻辑回归Logistic Regression,LR的算法,实际上它是一种分类算法
二十世纪早期,逻辑回归曾在生物科学中被使用,在那之‘后也在许多社会科学中被广泛运用。逻辑回归通常被应用于因变量(目标)是分类的场景,比如:
在机器学习领域,集成方法是一种强大的技术,它通过结合多个基本模型的预测结果来提高整体模型的性能和稳定性。Bagging(Bootstrap Aggregating)是集成方法中的一种重要技术,本文将深入探讨Bagging的原理、实现方式以及在Python中的应用。
梯度下降法及其Python实现 基本介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向。 梯度下降法特点:越接近目标值,步长越小,下降速度越慢。 下面将通过公式来说明梯度下降法。 建立模型为拟合函数h(θ) : 接下来的目标是将该函数通过样本的拟合出来,得到最佳的函数模型。因此构建损失函数J(θ)(目的是通过求解minJ(θ)
"启程"往往是最具挑战性的一步,特别是在面临众多选择时,人们往往难以做出决策。本教程旨在帮助那些几乎没有Python机器学习基础的初学者成长为知识丰富的实践者,而且整个过程都可以利用免费的资源来完成。本教程的主要目标是引导你了解众多可用资源,并帮助你筛选出最佳的学习资源。资源众多,但哪些是最有价值的?哪些资源能够相互补充?以及如何安排学习顺序才能达到最佳效果?首先,我们假设你目前对以下领域并不精通:
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 这几天推送了机器学习的降维算法,总结了特征值分解法,奇异值分解法,通过这两种方法做主成分分析(PCA)。大家有想了解的,可以参考: 数据预处理:PCA原理推导 数据降维处理:PCA之特征值分解法例子解析 数据降维处理:PCA之奇异值分解(SVD)介绍 数据降维:特征值分解和奇异值分解的实战分析 至此,已经总结了机器学习部分常
本文主要介绍了机器学习、深度学习、降维算法、集成算法、XGBoost、随机森林、贝叶斯分类器、聚类算法、PCA等算法,以及高斯混合模型、主成分分析等数据降维处理方法。文章还介绍了机器学习中的逻辑回归、决策树、支持向量机、神经网络等算法。此外,还介绍了如何使用Python的sklearn库和TensorFlow库实现这些算法。
前到现在为止,我们通过大约1周的时间初步对机器学习是怎么一回事算是有一些基本的理解了,从最基本的线性回归入手,讨论了如何在拿到一堆数据时,先进行数据预处理(暂时未详细阐述,会在以后某个时间段详细论述)
1 算法channel 公众号才成立两个月,在这段日子,每天推送一篇算法,机器学习,深度学习相关的文章,包括: 算法的基本思想 算法的实例分析 有些算法的源代码的实现 案例实战 2 原创文章整理 1机器学习:不得不知的概念(1)2 机器学习:不得不知的概念(2)3 机器学习:不得不知的概念(3)4 回归分析简介5 最小二乘法:背后的假设和原理(前篇)6 最小二乘法原理(后):梯度下降求权重参数7 机器学习之线性回归:算法兑现为python代码8 机器学习之线性回归:OLS 无偏估计及相关性python分析9
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 近几天推送了以决策树为基础模型的,性能优秀,应用广泛的 XGBoost 集成算法。与之相似的,比 XGBoost 发明还早的 GBDT(梯度提升决策树),它们的共同点都是以决策树为基础模型,要想深刻的理解这两种重要的集成算法,如果能更好地理解决策树算法的实现,会有助于理解它们。 下面,我们用源码实现决策树的回归算法,提到决策树一般
问题是这些预测对于分类来说是不合理的,因为真实的概率必然在0到1之间。为了避免这个问题,我们必须使用一个函数对p(X)建模,该函数为X的所有值提供0到1之间的输出。Logistic回归是以其核心函数Logistic函数命名的:
本列表选编了一些机器学习领域牛B的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统。 通用机器学习 MLPack DLib ecogg shark Closure 通用机器学习 Closure Toolbox—Clojure语言库与工具的分类目录 Go 自然语言处理
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 利用36天的时间,系统地梳理了机器学习(ML)的一些经典算法,从算法思想,到算法实例,有的包括源码实现,有的包括实战分析,大致分类如下: 机器学习的概念总结 1 机器学习:不得不知的概念(1) 2 机器学习:不得不知的概念(2) 3 机器学习:不得不知的概念(3) 线性回归 4 回归分析简介 5 最小二乘法:背后的假设和原理(前篇
聚类分析(Cluster Analysis)是一类经典的无监督学习算法。在给定样本的情况下,聚类分析通过特征相似性或者距离的度量方法,将其自动划分到若干个类别中。常用的聚类分析方法包括层次聚类法(Hierarchical Clustering)、k均值聚类(K-means Clustering)、模糊聚类(Fuzzy Clustering)以及密度聚类(Density Clustering)等。本节我们仅对最常用的kmeans算法进行讲解。
Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数是评价模型性能(一般为拟合程度+正则项),认为损失函数越小,性能越好。而让损失函数持续下降,就能使得模型不断改性提升性能,其最好的方法就是使损失函数沿着梯度方向下降(讲道理梯度方向上下降最快)。
在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1。假设我们有一个特征X,画出散点图,结果如下所示。这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0。这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差、准确率低。而逻辑回归对于这样的问题会更加合适。
很多人都提到了这一句,逻辑回归,虽然名字里有“回归”,但逻辑回归实际上是用于解决二分类(binary classification)问题的分类算法。它通过一个逻辑函数(sigmoid函数)将线性回归的输出值映射到一个(0, 1)之间的概率值,从而实现分类任务。
本文将介绍机器学习算法中的Logistic回归分类算法并使用Python进行实现。会接触到**最优化算法**的相关学习。
由于某些不可抗拒的原因,LaTeX公式无法正常显示. 点击这里查看PDF版本 Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 1. 前言 本文将介绍机器学习算法中的Logistic回归分类算法并使用Python进行实现。会接触到最优化算法的相关学习。 2. 算法原理 什么是回归? 简单来说,回归就是用一条线对N多个数据点进行拟合或者按照一定的规则来划分数据集,这个拟合的过程和划分的过程就叫做回归。 Logistic 回归
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 知乎专栏:化学狗码砖的日常 blog:http://pytlab.org github:https://github.com/PytLab ❈ 前言 最近由于开始要把精力集中在课题的应用上面了,这篇总结之后算法
支持向量机作为机器学习中最为难于理解的算法,小编将以三篇的篇幅去讲解小编自己理解的SVM算法。主要包括:初识支持向量机原理、SVM如何解决线性不可分、SVM实践举例;当然网络上也会有很多关于SVM这一经典算法的资料,大家可参见参考文献,与我们及时交流,共同学习~ 用一句话说明SVM的原理,即通过特征空间中的最大间隔去找出该空间的分类超平面;其中最大间隔就可以用支持向量来求得。 引入支持向量机之前,先要说明最简单的线性分类器:感知机;一个线性分类器,感知机的学习目标就是要在 n 维的数据空间中找到一个分类超平
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天推送了XGBoost的原理,已知某个样本 xi ,经过XGBoost 求解得到的 yi 是由 K 个决策树线性叠加的结果。那么在求解每个树的叶子节点的权重参数时,用的目标函数是损失函数 Loss 和正则化惩罚项组成的,XGBoost对这个目标函数做了很多次演化,其中重要的两步: 将损失函数 loss 用泰勒公式展开取前三项,这
玩转Pandas系列已经连续推送3篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的3篇文章:
GBDT分类:每一颗树拟合当前整个模型的损失函数的负梯度,构建新的树加到当前模型中形成新模型,下一棵树拟合新模型的损失函数的负梯度。下面是其在Python的sklearn包下简单调用方法。
摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。
逻辑回归在20世纪早期被用于生物科学。它后来被用于许多社会科学应用。因变量(目标)为分类变量时采用Logistic回归。
上次讲了利用Python实现波士顿房价预测的回归模型,这时小明一脸懵逼,心想回归模型是什么鬼??️? (咳咳,敲黑板~科普一下,在机器学习中,根据目标变量(因变量)是否是连续值可以分为回归和分类两种
支持向量机(Support Vector Machine,简称SVM)是一种强大的机器学习算法,用于分类和回归任务。在本文中,我们将使用Python来实现一个基本的支持向量机分类器,并介绍其原理和实现过程。
人工智能(Artificial Intelligence,AI)是当今科技领域的热门话题之一,而Python作为一种简单易学、功能强大的编程语言,在人工智能领域也扮演着重要的角色。本文将带领读者从零开始学习Python人工智能,主要围绕神经网络和机器学习展开,旨在让读者了解基本概念、原理以及如何用Python实现。
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天实践了一个数据降维的例子,用到了5个二维的样本点,通过特征值分解法,将样本降维为1个维度,这个过程又称为数据压缩,关于这篇文章,请参考: 数据降维处理:PCA之特征值分解法例子解析 今天来进一步谈谈数据降维,以实现主成分提取的另一种应用非常广泛的方法:奇异值分解法,它和特征值分解法有些相似,但是从某些角度讲,比特征值分解法更强
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 这几天推送了关于机器学习数据预处理之降维算法,介绍了通过降维提取数据的主成分的背景,特征值分解法,奇异值分解法的相关原理。 现在我们再回顾下这些问题,首先,提取主成分的必要性,从数字信号的角度分析,主成分时方差较大,称为信号,而噪声是方差较小的;极限讲,如果100个样本点都汇集成一个点,也就是方差为0,那么不就相当于我们手上有1个
机器之心整理 参与:路雪、蒋思源 2017年,人工智能技术出现了很多新的技术和发展,在这一年中机器之心发布了很多教程类文章,有适合入门学习者的,有适合已经具备专业知识和实践经验的从业者的;有关于语言的,有关于框架的,有关于硬件配置的,甚至还有关于猫片、漫画的…… 教程那么多,你……看完了吗? 本文对这一年来机器之心发布的教程进行总结,共分为 What 和 How 两大部分,在两大板块下又进行细分,目录如下: What 概念 机器学习基础 深度模型基础 强化学习基础 数学 How
领取专属 10元无门槛券
手把手带您无忧上云