首页
学习
活动
专区
圈层
工具
发布

复合索引:向量搜索的高级策略

在Faiss中构建复合索引,可以通过以下元素的任意组合来实现: 向量变换:这是在索引之前对向量进行的预处理步骤,例如主成分分析(PCA)或优化的量化(OPQ),旨在改善向量的质量或分布。...精炼:在搜索过程中,精炼步骤使用原始非压缩向量的距离计算来重新排序搜索结果,以提高搜索的精度。这一步骤也可以通过另一种索引方法来实现。...粗量化的关键优势在于它通过向量“聚类”来实现非详尽搜索,例如IVF中的倒排索引,这可以显著提高搜索效率。而细量化则关注于通过编码技术减少向量的存储需求,同时最小化对搜索准确性的影响。...通过合并IVF和PQ索引,可以将PQ量化后的向量存储在IVF结构中,实现更高效的搜索 Faiss Index Factory:简化索引构建流程 Faiss 的 index_factory 函数提供了一种极为简洁的方法来构建复合索引...在这种索引中,ADC指的是在查询向量与量化后的向量比较时进行的对称距离计算。

75010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言的数据结构(包含向量和向量化详细解释)

    更多内容请参考《R语言编程艺术》 ——————————————— 向量类型是R语言的核心。深入理解向量对R中数据结构及其操作,函数的开发和应用有着重要意义。...也就是说,向量的所有元素必须属于同种模式(mode),或数据类型(见1.2),比如数值型,字符型等。其类型可以用typeof()查看。 标量只含有一个元素,在R中没有0维度或标量类型。...2向量的循环补齐 两个向量使用运算符,如果两个向量长度不同,R会自动循环补齐(recycle),也就是它会自动重复较短的向量,直到与另外一个向量匹配。...对矩阵可以进行各种线性代数运算,矩阵索引,矩阵筛选 矩阵因为是特殊的向量所以可以用向量的方式索引(意义不大)或根据行列进行索引。...并且三个变量的类型不一样,分别是字符型,数字型,逻辑值。 注意,列表的长度是3,是组件的个数。 列表索引 三种方式访问列表lst中的组件c,返回值是c的数据类型。

    7.8K20

    腾讯词向量实战:通过Annoy进行索引和快速查询

    非常有用,特别是做线上服务的时候,现在有很多Object2Vector, 无论这个Object是Word, Document, User, Item, Anything, 当这些对象被映射到向量空间后,...,关于如何用Annoy做词向量的索引和查询这个问题,在用Annoy玩腾讯词向量之前,我google了一下相关的资料,这篇文章《超平面多维近似向量查找工具annoy使用总结》提到了一个特别需要注意的坑:...gensim.models import KeyedVectors # 此处加载时间略长,加载完毕后大概使用了12G内存,后续使用过程中内存还在增长,如果测试,请用大一些内存的机器 In [16]:...Annoy索引,腾讯词向量大概是882万条 In [23]: from annoy import AnnoyIndex # 腾讯词向量的维度是200 In [24]: tc_index = AnnoyIndex...另外上次文章推出后,还有同学后台问腾讯词向量是怎么来的,所以这里再贴一下 腾讯 AI Lab 词向量官方文档和下载地址: Tencent AI Lab Embedding Corpus for Chinese

    3.5K50

    高维向量压缩方法IVFPQ :通过创建索引加速矢量搜索

    在数据检索中,通常使用很高维度的特征向量来描述数据。乘积量化通过将这些高维向量分解成较小的子向量,并对每个子向量进行独立的量化,从而减少了存储和计算的复杂性。这有助于加快检索速度。...这种差异是由于所有压缩算法在压缩和重构过程中固有的损失造成的,也就是量化的损失这是不可避免的。 IVFPQ的搜索流程 建立索引: 在建立索引阶段,首先将数据库中的每个数据提取出高维度的特征向量。...查询处理: 当进行查询时,首先将查询数据的特征向量进行乘积量化,映射到码本中。然后,通过倒排索引找到包含与查询码本相似的倒排列表。...精确匹配: 对于剩余的倒排列表中的数据,通过计算它们的原始特征向量与查询特征向量之间的距离,进行更精确的匹配。这可以使用标准的相似性度量,如欧氏距离或余弦相似度。...总结 IVFPQ的搜索流程结合了乘积量化和倒排索引的优势,通过在低维度的码本上建立倒排索引,既提高了搜索效率,又在倒排列表剪枝和精确匹配阶段进行了优化,以实现在大规模数据数据库中的快速数据检索。

    1K10

    R获取数值向量的分位数值

    如果我们手上有一个数值向量,怎么用R去获取这个向量的各个分位数值呢?...我们来看个具体的例子 a=1:10 summary(a) 我们可以得到下面的结果,summary(a)一共得到6个数值,分别是a的最小值,1/4分位数,中值(2/4分位数),均值,3/4分位数和最大值。...四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。...第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。 第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。...如果我们要取出每一列的中值,直接使用下面的方法是得不到数值的,是一个字符串。

    1.5K10

    ChatGPT 都推荐的向量数据库,不仅仅是向量索引

    不少人理解向量数据库就是在传统数据库之上新增一个向量索引,然而随着大模型应用逐渐拓展到核心业务领域,通过复杂代码工程来拼接大模型、向量索引和结构化数据分析结果会阻碍规模化复制。...阿里云 AnalyticDB 锚点未来 5 年企业数据架构智能化升级需求,全自研了企业级向量数据库,它也是国内云厂商中唯一被 ChatGPT 和 LangChain 推荐的向量引擎。...ANN 中的最后一类是图的算法,它其实就是大家都比较熟悉的 NSW 的算法以及 HNSW 的算法。HNSW 其实就是在 NSW 上做多个 NSW 的叠加。...那大家都知道我们的数据库它是可以分为分区的,比如说有时间的分区,这种情况下,对于每个分区都有一个 HNSW 的索引,每一个索引我都会去取这个 top k 乘以一个放大系数。...第一个是说我们目前在做的向量的存算分离,因为大家刚才听我的描述其实很容易能够理解,我们其实是用本地的存储来存向量的,对于 HNSW 索引我们需要去高频的去做 update 和 delete 这种操作,这对云原生的

    1.2K30

    ChatGPT 都推荐的向量数据库,不仅仅是向量索引

    不少人理解向量数据库就是在传统数据库之上新增一个向量索引,然而随着大模型应用逐渐拓展到核心业务领域,通过复杂代码工程来拼接大模型、向量索引和结构化数据分析结果会阻碍规模化复制。...阿里云 AnalyticDB 锚点未来 5 年企业数据架构智能化升级需求,全自研了企业级向量数据库,它也是国内云厂商中唯一被 ChatGPT 和 LangChain 推荐的向量引擎。...ANN 中的最后一类是图的算法,它其实就是大家都比较熟悉的 NSW 的算法以及 HNSW 的算法。HNSW 其实就是在 NSW 上做多个 NSW 的叠加。...那大家都知道我们的数据库它是可以分为分区的,比如说有时间的分区,这种情况下,对于每个分区都有一个 HNSW 的索引,每一个索引我都会去取这个 top k 乘以一个放大系数。...第一个是说我们目前在做的向量的存算分离,因为大家刚才听我的描述其实很容易能够理解,我们其实是用本地的存储来存向量的,对于 HNSW 索引我们需要去高频的去做 update 和 delete 这种操作,这对云原生的

    72930

    paddle深度学习4 向量的索引与切片

    通过索引,可以选取向量中的指定元素【一维Tensor的索引】对于一维Tensor,可以仿照python的列表,使用从0开始整数顺序索引import paddlea=paddle.arange(1,7)print...(a[-1],a[-2],a[-3],a[-4],a[-5],a[-6])【一维Tensor的索引】对于一个二维数组,选取某个元素就要用到两个整数指定它所在的行和列数字之间用逗号隔开,可以使用正负数,也可以正负数混用...paddle.reshape(paddle.arange(1,13),(3,4))print(a)print(a[2,3])print(a[0,-1])【Tensor切片】切片操作可以选取Tensor的部分元素下面以二维向量为例...【选取整行整列】如果某个维度的索引为一个冒号:则表示选取这个维度的所有元素,我们可以使用这个特性选中整行元素import paddlea=paddle.reshape(paddle.arange(1,13...paddlea=paddle.reshape(paddle.arange(1,13),(3,4))print(a)print(a[0,1:4])a[0,1:4]就表示选取向量a的第0行中的第1~第3元素

    24300

    游戏开发中的向量数学

    但是,这在大多数计算机图形应用程序中很常见。 二维平面中的任何位置都可以通过一对数字来标识。 但是,我们也可以将位置(4,3)视为与(0,0)点或原点的偏移量。...本文讨论的相同数学规则适用于两种类型。 会员访问 可以直接通过名称访问向量的各个组成部分。...在此图像中,步骤1的太空飞船的位置矢量为(1,3),速度矢量为(2,1)。速度矢量表示船每步移动多远。我们可以通过将速度添加到当前位置来找到步骤2的位置。 提示 速度测量单位时间的位置变化。...正常化 归一化向量意味着将其长度减小到,1同时保留其方向。这是通过将其每个组成部分除以其大小来完成的。...但是,在3D中,这还不够。我们还需要知道要旋转的轴。通过计算当前朝向和目标方向的叉积可以发现。所得的垂直向量是旋转轴。

    1.8K10

    Python中的向量化编程

    在Andrew Ng的>课程中,多次强调了使用向量化的形式进行编码,在深度学习课程中,甚至给出了编程原则:尽可能避免使用for循环而采用向量化形式。...但是对于机器学习领域广为使用的python语言而言,并没有内置这样的功能,毕竟python是一门通用语言。好消息是,借助一些第三方库,我们也可以很容易的处理向量数值运算。...许多Numpy运算都是用C实现的,相比Python中的循环,速度上有明显优势。所以采用向量化编程,而不是普通的Python循环,最大的优点是提升性能。...另外相比Python循环嵌套,采用向量化的代码显得更加简洁。...更多关于numpy向量化编程的指导,可以参考这本开源的在线书籍:From Python to Numpy )

    2.5K30

    机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法

    在机器学习中的矩阵向量求导(一) 求导定义与求导布局中,我们讨论了向量矩阵求导的9种定义与求导布局的概念。...今天我们就讨论下其中的标量对向量求导,标量对矩阵求导, 以及向量对向量求导这三种场景的基本求解思路。     对于本文中的标量对向量或矩阵求导这两种情况,如前文所说,以分母布局为默认布局。...向量对向量求导,以分子布局为默认布局。如遇到其他文章中的求导结果和本文不同,请先确认使用的求导布局是否一样。另外,由于机器学习中向量或矩阵对标量求导的场景很少见,本系列不会单独讨论这两种求导过程。...用定义法求解标量对向量求导     标量对向量求导,严格来说是实值函数对向量的求导。即定义实值函数$f: R^{n} \to R$,自变量$\mathbf{x}$是n维向量,而输出$y$是标量。...首先我们想到的是基于矩阵求导的定义来做,由于所谓标量对向量的求导,其实就是标量对向量里的每个分量分别求导,最后把求导的结果排列在一起,按一个向量表示而已。

    1.4K20

    游戏开发中的进阶向量数学

    游戏开发中的进阶向量数学 飞机 到飞机的距离 远离原点 以2D方式构建平面 飞机的一些例子 3D碰撞检测 更多信息 飞机 点积具有带有单位向量的另一个有趣的属性。...想象一下,垂直于该矢量(并通过原点)的平面通过了一个平面。...平面将整个空间分为正数(在平面上)和负数(在平面下),并且(与流行的看法相反),您还可以在2D中使用其数学运算: 垂直于曲面的单位向量(因此,它们描述了曲面的方向)称为单位法向向量。...在3D中,这是完全相同的,除了平面是一个无限的表面(想象一个可以定向并固定到原点的无限的平纸)而不是一条线。 到飞机的距离 现在很清楚飞机是什么,让我们回到点积。...可以通过使N和D都为负值来翻转平面的极性。

    1.2K40

    机器学习中的矩阵向量求导(三) 矩阵向量求导之微分法

    在机器学习中的矩阵向量求导(二) 矩阵向量求导之定义法中,我们讨论了定义法求解矩阵向量求导的方法,但是这个方法对于比较复杂的求导式子,中间运算会很复杂,同时排列求导出的结果也很麻烦。...因此我们需要其他的一些求导方法。本文我们讨论使用微分法来求解标量对向量的求导,以及标量对矩阵的求导。     本文的标量对向量的求导,以及标量对矩阵的求导使用分母布局。...\mathbf{x}})^Td\mathbf{x}$$     从上次我们可以发现标量对向量的求导和它的向量微分有一个转置的关系。     ...比起定义法,我们现在不需要去对矩阵中的单个标量进行求导了。     ...微分法求导小结     使用矩阵微分,可以在不对向量或矩阵中的某一元素单独求导再拼接,因此会比较方便,当然熟练使用的前提是对上面矩阵微分的性质,以及迹函数的性质熟练运用。

    2K20

    首章:向量搜索引擎的设计思路概览

    首章:向量搜索引擎的设计思路概览 本文将深入解析向量搜索引擎的设计思路,从架构设计到算法选择,从性能优化到企业级特性,带你了解一个向量搜索系统是如何设计和实现的。可跳过该章节直接从第一章开始学习。...整套课程内容设计 第一部分:理论基础与架构设计(1-3章) 第一章:向量搜索引擎概述与理论基础 ✅ 1.1 什么是向量搜索引擎 1.2 向量搜索的挑战 1.3 常见的向量搜索算法 1.4 HNSW算法原理...类完整实现 3.3 SearchResult类的实现 3.4 向量数据的内存优化 3.5 向量验证和安全性 3.6 性能测试和基准测试 3.7 向量序列化和反序列化 第二部分:核心算法实现(4-6章)...在众多ANN(近似最近邻)算法中,我们选择HNSW的原因: HNSW核心思想 HNSW算法的核心思想可以用"小世界网络"来理解: 搜索算法流程 数据结构设计 向量抽象设计 向量是整个系统的基础数据结构,...企业环境需要支持多租户隔离: 权限管理系统 基于RBAC的权限管理设计: 系统交互流程 搜索请求流程 索引构建流程 监控与可观测性 监控指标设计 通过以上设计思路的分析,我们可以看到一个向量搜索引擎的实现

    13210

    MATLAB中SVM(支持向量机)的用法

    -totalSV: 表示支持向量的总数。 -rho: 决策函数wx+b中的常数项的相反数(-b)。 -Label: 表示数据集中类别的标签,比如二分类常见的1和-1。...如Label=[1; -1],nSV=[63; 67],则标签为1的样本有63个支持向量,标签为-1的有67个。 -sv_coef: 表示每个支持向量在决策函数中的系数。...-SVs: 表示所有的支持向量,如果特征是n维的,支持向量一共有m个,则为m x n的稀疏矩阵。...-r用来设置核函数中的coef0,也就是公式中的第二个r,默认值是0。 3)对于RBF核函数,有一个参数。...-g用来设置核函数中的gamma参数设置,也就是公式中的第一个r(gamma),默认值是1/k(k是类别数)。-r用来设置核函数中的coef0,也就是公式中的第二个r,默认值是0。 2.

    2.9K20

    Threejs入门之十九:Threejs中的向量

    今天我们来认识下Threejs中的向量,在Threejs中,有二维向量Vector2、三维向量Vector3和四维向量Vector4之分,这些向量可以表示很多数据,后面会一一介绍,在了解Threejs中的向量之前...,我们先来复习下数学中的向量1.数学中的向量在数学中,向量(也称为矢量),指具有大小和方向的量。...创建一个二维向量const b = new THREE.Vector2( );创建一个二维向量并赋值const a = new THREE.Vector2( 0, 1 );其构造函数如下: Vector2...任意的、有顺序的、三个为一组的数字组合。 构造函数Vector3( x : Float, y : Float, z : Float )x - 向量的x值,默认为0。y - 向量的y值,默认为0。...构造函数Vector4( x : Float, y : Float, z : Float, w : Float )x - 向量的x值,默认为0。y - 向量的y值,默认为0。

    1.1K20

    125-R编程19-请珍惜R向量化操作的特性

    向量化问题(Vectorize) · 语雀 (yuque.com)[1] R inferno 前言 虽然之前也在[[50-R茶话会10-编程效率提升指北]] 中提过向量化可以极大的改善效率。...但还是按照inferno 中的内容,特此额外总结一下。 1-别用循环的方言教R做事 lsum <- sum(log(x)) 我们的所有操作,都可以对向量的每一个元素执行。...同样在[[50-R茶话会10-编程效率提升指北]] 我们举过如下例子:在计算总和、元素乘积或者每个向量元素的函数变换时, 应使用相应的函数,如sum, prod, sqrt, log等。...相当于把你的函数直接向量化。 从上可知,Vectorize函数的向量化效率比起apply 并没有较为明显提升,但原汁原味的向量化函数可是飞速了许多。...比如利用取子集对数据框批量操作,如果你是一个较大的数据框,可能就需要考虑其他专门处理大数据框的R包,亦或是改用循环的方法了。

    78430
    领券