作者 | Jordan Tigani 译者 | 红泥 策划 | 李冬梅 随着云计算时代的发展,大数据实际已经不复存在。在真实业务中,我们对大数据更多的是存储而非真实使用,大量数据现在已经变成了一种负债,我们在选择保存或者删除数据时,需要充分考虑可获得价值及各种成本因素。 十多年来,人们一直很难从数据中获得有价值的参考信息,而这被归咎于数据规模。“对于你的小系统而言,你的数据量太庞大了。”而解决方案往往是购买一些可以处理大规模数据的新机器或系统。但是,当购买了新的设备并完成迁移后,人们发现仍然难以处
Google Analytics 无处不在,对于大多数营销功能的统计报告至关重要。作为加入 ClickHouse 之前没有营销分析经验并发现自己定期以博客形式贡献内容的人,我长期以来一直认为 Google Analytics (GA4) 提供了一种快速、无缝的方式来衡量网站。因此,当我们负责报告我们内容策略的成功情况并确保我们制作的内容与您(我们的用户)相关时,GA4 似乎是一个明显的起点。
【文】王艺 关注人工智能 投稿请联系wangyi@csdn.net或公众号后台留言 ---- OpenAI是一个非营利人工智能科研团队,其创始人之一Elon Musk是Paypal以及Tesla的CEO。除此之外,他还是私人火箭发射公司SpaceX、太阳能电池商SolarCity的CEO。OpenAI的愿景是建立安全的AI系统、并尽量让每个人都能享受到AI带来的便利。因此,OpenAI的项目都是开源的,其研究结果也会毫无保留地公布。 OpenAI于2015年12月成立。2016年4月,OpenAI发布了
今年4月,美国电影放映商Regal Cinemas推出了一款,以交互式AR为特色的新型可收藏电影杂志《Moviebill》。观影者可通过智能手机扫描该杂志,了解影片背后的视频、采访、游戏和其他内容。
最近,谷歌宣布正式发布 Hive-BigQuery Connector,简化 Apache Hive 和 Google BigQuery 之间的集成和迁移。这个开源连接器是一个 Hive 存储处理程序,它使 Hive 能够与 BigQuery 的存储层进行交互。
数据保留时间对探索会有影响,探索里能选择的最大时间范围就是你设置的保留时间,如果你没有设置,GA4里的数据保留默认是2个月,探索里最多可以对最近两个月的数据做分析,所以,一定要将数据保留事件设置为最长时间。
我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。
使用 Kafka,如何成功迁移 SQL 数据库中超过 20 亿条记录?我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。
随着区块链技术的使用越来越广泛,存储在区块链上的数据量也在增加。这是因为更多的人在使用该技术,而每笔交易都会给区块链增加新的数据。此外,区块链技术的使用已经从简单的资金转移应用,如涉及使用比特币的应用,发展到更复杂的应用,包括智能合约之间的相互调用。这些智能合约可以产生大量的数据,从而造成了区块链数据的复杂性和规模的增加。随着时间的推移,这导致了更大、更复杂的区块链数据。
本文作者为 PingCAP 联合创始人兼 CTO 黄东旭,将分享分布式数据库的发展趋势以及云原生数据库设计的新思路。
作者 | Romit Mehta、Vaishali Walia 和 Bala Natarajan
Chang Stream(变更记录流) 是指collection(数据库集合)的变更事件流,应用程序通过db.collection.watch()这样的命令可以获得被监听对象的实时变更。BigQuery是Google推出的一项Web服务,该服务让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。
在讲新的思路之前,先为过去没有关注过数据库技术的朋友们做一个简单的历史回顾,接下来会谈谈未来的数据库领域,在云原生数据库设计方面的新趋势和前沿思考。首先来看看一些主流数据库的设计模式。
我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。
【前言】作为中国的 “Fivetran/Airbyte”, Tapdata 是一个以低延迟数据移动为核心优势构建的现代数据平台,内置 60+ 数据连接器,拥有稳定的实时采集和传输能力、秒级响应的数据实时计算能力、稳定易用的数据实时服务能力,以及低代码可视化操作等。典型用例包括数据库到数据库的复制、将数据引入数据仓库或数据湖,以及通用 ETL 处理等。 随着 Tapdata Connector 的不断增长,我们最新推出《Tapdata Connector 实用指南》系列内容,以文字解析辅以视频演示,还原技术实现细节,模拟实际技术及应用场景需求,提供可以“收藏跟练”的实用专栏。本期实用指南以 SQL Server → BigQuery 为例,演示数据入仓场景下,如何将数据实时同步到 BigQuery。
在上篇Vertica 分区表设计中,已经提过了Vertica的分区表创建和分区删除,但举例上并不系统, 本篇文章将系统的对分区表设计及后续的删除分区进行讲解。
最近随着Snowflake上市后市值的暴增(目前700亿美金左右),整个市场对原生云数仓都关注起来。近日,一家第三方叫GigaOM的公司对主流的几个云数仓进行了性能的对比,包括Actian Avalanche、Amazon Redshift、Microsoft Azure Synapse、Google BigQuery、Snowflake,基本涵盖了目前市场上主流的云数仓服务。
在 0.11.0 中,我们默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件 listing 的性能。在reader方面,用户需要将其设置为 hoodie.metadata.enable = true 以从中受益。元数据表和相关文件listing 仍然可以通过设置hoodie.metadata.enable=false来关闭此功能。因此,使用异步表服务部署 Hudi 的用户需要配置锁服务。如果无需使用此功能,可以通过额外设置这个配置 hoodie.metadata.enable = false 像以前一样使用 Hudi。
在 Twitter 上,我们每天都要实时处理大约 4000 亿个事件,生成 PB 级的数据。我们使用的数据的事件源多种多样,来自不同的平台和存储系统,例如 Hadoop、Vertica、Manhattan 分布式数据库、Kafka、Twitter Eventbus、GCS、BigQuery 和 PubSub。
区块链技术和加密货币在吸引越来越多的技术、金融专家和经济学家们眼球的同时,也给与了他们无限的想象空间。从根本上来说,加密货币只是底层区块链技术的应用之一,而伴随着区块链技术的不断突破与发展,“区块链+”这一概念正在不断地深入人心。
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
冷链物流的复杂性、成本和风险使其成为物联网的理想使用案例。以下是我们如何构建一个完整的物联网解决方案,以应对这些挑战。
在 0.11.0 中,默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件listing的性能。在reader方面,用户需要将其设置为 true 以从中受益。元数据表和相关文件listing 仍然可以通过设置hoodie.metadata.enable=false来关闭此功能。因此,使用异步表服务部署 Hudi 的用户需要配置锁服务。如果此功能与您无关,您可以通过额外设置这个配置 hoodie.metadata.enable=false 像以前一样使用 Hudi。
本文是专题的第一篇文章,主要讲解优化数据存储,涉及到锁、批处理、重试机制以及数据一致性等问题。下面 我们就开始吧。
原文地址:https://dzone.com/articles/bigquery-data-warehouse-clouds
作者 | Steef-Jan Wiggers 译者 | 明知山 策划 | 丁晓昀 最近,谷歌宣布 Bigtable 联邦查询普遍可用,用户通过 BigQuery 可以更快地查询 Bigtable 中的数据。此外,查询无需移动或复制所有谷歌云区域中的数据,增加了联邦查询并发性限制,从而缩小了运营数据和分析数据之间长期存在的差距。 BigQuery 是谷歌云的无服务器、多云数据仓库,通过将不同来源的数据汇集在一起来简化数据分析。Cloud Bigtable 是谷歌云的全托管 NoSQL 数据库,主要用
今天和同事聊一个需求,大概就几分钟的时间,突然发现这个过程还是值得总结的,后期也会把这样的一些需求讨论过程记录下来,能够提炼成一套方法论。
前言 在7月10日就要去扬州实习了,首先是为期2个月的培训。一个月的Java,一个月的C#。在这一个月里面,准备梳理一下java和C#的基础知识,同时也进行更深一步的学习。最近也一直在听八三夭的一首,我不想改变世界,我只想不被世界改变。同时也对自己的未来充满着信心和憧憬。 ---- ADO.NET概述 ADO.NET是美国微软公司推出的.NET平台中的一种数据访问技术。ADO.NET类库中提供了用于数据连接,处理数据操作的类。 ---- ADO.NET组件 ADO.NET有2个重要的组成部分:DataSet
因子挖掘是量化交易的基础。随着历史交易数据日益增多,交易市场量化竞赛的不断升级和进化,量化投研团队开始面对数据频率高、因子数量多的场景,以10分钟线10000个因子5000个股票为例,一年的因子数据约为 2.3T 左右,1分钟线的数据量达到23T,3秒线的数据量将达到460T。如此量级的数据就对因子存储方案提出了很高的要求。
首先的说说拉链表到底是个什么东西,DB 一般听到一种表,可能会联想到某种物理方面的技术,如临时表, template table , 继承表,等等, 今天的拉链表本身不是一项物理技术,而是一种逻辑技术。通过某种设计,来达到某些目的的,人为的方法。
湖仓一体架构模式的两个关键支柱是开放性和互操作性。在云存储系统(如S3、GCS、ADLS)上构建数据湖仓,并将数据存储在开放格式中,提供了一个您技术栈中几乎每个数据服务都可以利用的无处不在的基础。
如果这样存数据,对于用户量大的应用,db可能扛不住,比如 1000W 用户,一天一条,那么一个月就是 3 亿数据,非常庞大。
前几天上午在对数据库的一张表进行操作的时候,由于这张表是按照时间的一张统计表,正好到那天没有测试数据了,于是我想将表中所有的时间,统一更新到后一个月,于是对80w条数据的更新开始了。整个过程曲折的一批。同时学到了很多知识,在此进行记录。希望对大家有帮助。
在讨论细节之前,我想对整个过程做一个概述。这个流程图显示了我需要训练的 3 个模型,以及将模型连接在一起以生成输出的过程。
最近又遇到了一次慢查把db(mariadb10)几乎打挂的案例,作为一个核心支付系统的技术负责人,真是每日如履薄冰。因为之前支付系统经常出问题,现在各个BG对支付系统都盯得很紧。这次要不是我及时让DB给暴力清理数据,没准又提一个P2故障;
他们主要为消费者提供房地产购买、出售与租赁服务,同时发布各类房产新闻、装修技巧以及生活方式层面的内容。每一天,都有数百万消费者访问REA Group网站。
账单详情查询功能函数 函数语法:ABAP 开发工具:SAP GUI 740 基本逻辑: 通过账单编号billid取数,仅传输应收账单日期小于等于次月最后一天的账单信息 功能函数实现代码如下,很简单的函数,主要是实现三块逻辑: 调用系统内部函数,获取当前操作时间的次月最后一天值; 按照功能说明书要求进行取值; 做一个筛选判断,查找符合基本逻辑的信息; 补充:账单信息的传输通过PO接口发送实现,在接口METHOD调用此函数即可。 FUNCTION zsrefm_check_bill. *"--------
假定每月的销售记录都有客户名字这一项,且每月的客户信息都是只增加不删除的情况,求出每个月增加的客户名字表。
本文介绍了如何基于Falcon的Process进行大数据量ETL处理,并利用Oozie进行调度。通过在Falcon的Advanced Options中配置自定义的Shell脚本,可以实现对大数据量的ETL处理。同时,通过在Oozie中定义Sqoop Action,可以实现将数据抽取到Hive表中。Oozie会基于Falcon的Process定义生成对应的Action,并将其添加到Oozie Workflow中。最后,通过在Oozie Workflow中调用Sqoop Action,实现大数据量的ETL处理。
大家好,我是独孤风,一位曾经的港口煤炭工人,目前在某国企任大数据负责人,公众号大数据流动主理人。在最近的两年的时间里,因为公司的需求,还有大数据的发展趋势所在,我开始学习数据治理的相关知识。今天给大家分享一体化的元数据管理平台——OpenMetadata。
来源:https://blog.csdn.net/zwgdft/article/details/106291463
接下来我们就应用技术手段,基于Python,建立一个工具,可以阅读和分析川普的Twitter。然后判断每条特定的Twitter是否具有川普本人的性格。
标星★公众号 爱你们♥ 作者:Ali Alavi、Yumi、Sara Robinson 编译:公众号进行了全面整理 如你所见,我们手动复制了Trump的一条Twitter,将其分配给一个变量,并使用split()方法将其分解为单词。split()返回一个列表,我们称之为tweet_words。我们可以使用len函数计算列表中的项数。在第4行和第5行中,我们打印前面步骤的结果。注意第5行中的str函数。为什么在那里最后,在第9行中,我们循环遍历tweet_words:也就是说,我们逐个遍历tweet
「SQL面试题库」是由 不是西红柿 发起,全员免费参与的SQL学习活动。我每天发布1道SQL面试真题,从简单到困难,涵盖所有SQL知识点,我敢保证只要做完这100道题,不仅能轻松搞定面试,代码能力和工作效率也会有明显提升。
领取专属 10元无门槛券
手把手带您无忧上云