我的思路是 先把5份数据的基因名取交集 用基因名给每份数据做行名 根据取交集的结果来提取数据 最后合并数据集 那期内容有人留言了简便方法,很短的代码就实现了这个目的。...我将代码记录在这篇推文里 因为5份数据集以csv格式存储,首先就是获得存储路径下所有的csv格式文件的文件名,用到的命令是 files<-dir(path = "example_data/merge_data...) df<-map(files,read.csv) class(df) df是一个列表,5份数据分别以数据框的格式存储在其中 最后是合并数据 直接一行命令搞定 df1<-reduce(df,inner_join...) df1就是我们想要的结果 达成这个目的最终总共才用到了4行代码,太方便了。...之前和一位同学讨论的时候他也提到了tidyverse整理数据,但是自己平时用到的数据格式还算整齐,基本上用数据框的一些基本操作就可以达到目的了。
数据(集)处理是数据分析过程中的重要环节,今天特别整理数据(集)合并、增减与连接的相关内容,并逐一作出示例。...目 录 1 数据合并 1.1 cbind列合并(等长) 1.2 rbind行合并 2 数据连接/匹配 2.1 内连接 2.2 外连接 2.3 左连接 2.4 右连接 2.5 双(多)字段内连接 3 数据增减...正 文 1 数据合并 1.1 cbind列合并(等长) 总结:cbind等行数、按列合并(无序) #等长 #生成测试数据 > ID1 <- c(1:4) > ID2 <- c(2:5) > name...总结:按行合并,需要注意数据集需要有相同的列字段名 > #生成测试数据student1 > ID <- c(1:4) > score <- c(8,22,7,33) > student1数据集需要有相同的列字段名 ID score 1 1 8 2 2 22 3 3 7 4 4 33 5 A 11 6 B 2 7 C
Q:多个数据集,列数不一致,列名也不一致,如何按行合并,然后保留全部文件的变量并集呢? A:使用 rbind.fill 函数试试!...数据集按列合并时,可以根据merge 或者 dplyr函数包的merge系列函数决定连接方式,达到数据合并的需求。...data1,data2,data3 列数不一致,列名也不一致,现在需要按行合并,可能的问题: 1)rbind: 是根据行进行合并(行叠加)但是要求rbind(a, c)中矩阵a、c的列数必需相等。...2)列数相同的时候,变量名不一致也会合并,导致出错 二 rbind.fill“智能”合并 列数不一致多个数据集,需要按行合并,尝试使用plyr包rbind.fill函数 library(plyr) rbind.fill...呐,就是这样,rbind.fill函数会自动对应数据列名,不存在的会补充列,缺失时NA填充。
把数据集( dataset )的行或列映射为系列(series) 用户可以使用 seriesLayoutBy 配置项,改变图表对于行列的理解。...‘row’: 系列被安放到 dataset 的行上面。 把数据集( dataset )的行或列映射为系列(...,每个系列对应到 dataset 的每一行。...,每个系列对应到 dataset 的每一列。
即便是 R 这样专门给统计工作者使用的软件,从前也需要调用若干条命令(一般跟特征变量个数成正比),才能完成。 我最近发现了一款 R 包,可以非常方便地进行数据集总结概览。...只要一条语句,就帮你完成探索性数据分析中的许多步骤。 通过本文,我把它分享给你。希望对你的数据分析工作有帮助。 演示 你不需要安装任何软件。...你可以直接复制粘贴进编辑区域。...其实前3行语句,都是准备工作。真正总结概览功能,只需第4条。 第一行: tidyverse 是一个非常重要的库。可以说它改进了 R 语言处理数据的生态环境。...对于定量数据,直接汇报最大、最小、均值、中位数等信息。 第六列是有效值个数;与其互补,第七列是缺失值个数。 第四列是频数。显示每一个变量对应独特取值出现的情况。
原作 Kin Lim Lee 乾明 编译整理 量子位 出品 | 公众号 QbitAI 最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。...数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。 这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。...二是非常简单,加上注释最长的也不过11行。 在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。 大家可以把这篇文章收藏起来,当做工具箱使用。...涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...当数据集变大时,需要转换数据类型来节省内存。
问题现象某客户在使用触发器将 varchar(4000 char)列的数据从表 A 复制到表 B 时,表 B 上列的数据与 A 上对应列的数据不同且为乱码。...如下截图为 A 的数据及使用触发器复制到 B 的数据:问题的风险及影响数据正确性无法保证。...问题影响的版本所有的 YashanDB 版本问题发生原因YashanDB 在处理触发器场景下的 varchar(4000 char)列的数据复制时,处理机制有误。...解决方法及规避方式将列的长度修改为 varchar(2000 char)或者更小。
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。...数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。 这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。...二是非常简单,加上注释最长的也不过11行。 在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。 大家可以把这篇文章收藏起来,当做工具箱使用。...涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...当数据集变大时,需要转换数据类型来节省内存。
上游分析流程 02.课题多少个样品,测序数据量如何 03. 过滤不合格细胞和基因(数据质控很重要) 04. 过滤线粒体核糖体基因 05....我们可以开始尝试分析一些文献的公共数据集啦,不过在处理那些数据的过程中,我们还需要传授给大家几个小技巧。...合并两个不同panel的cytof数据集 有一些情况下,你的同一个实验项目的多个FCS文件,它们的抗体顺序并不一致。...,r2$channel_name) r1;r2[n,] # 首先合并抗体信号矩阵 ct=cbind(ct1,ct2[n,]) ex=cbind(ex1,ex2[n,]) # 然后合并细胞的样本来源及其分组信息...) sce 得到的全新的SingleCellExperiment对象就包含了两个不同panel顺序的cytof数据集啦。
(2)visdat有6个功能函数: vis_dat()可视化一个数据框,显示列的类别,并显示缺少的数据。 vis_miss()只显示缺失的数据,并允许对缺失进行聚类并重新排列。...()可视化数据中各个数据的类别 示例 (1)使用vis_dat()函数 通过经典的airquality数据集(其中包含有关1973年5月至9月纽约每日空气质量测量的信息)展示vis_dat()的功能。...上图告诉我们:R将此数据集读取为数值型或者整数型,并在Ozone和Solar.R中存在一些缺失的数据。缺少的数据由灰色表示。...通过图片的输出结果我们可以看出, Ozone; Solar.R;Temp ;Month Day这几列为数字型,而Wind这一列为整数型。...当在超过1000行的数据上使用它时,请考虑这一点。
一、前言 前几天在Python最强王者交流群【FiNε_】问了一个Python自动化办公,问题如下:python 读取一个文件里面几百个csv数据集 然后按照列名合并一个数据集。...二、实现过程 这里【隔壁山楂】给了一个解答,如下图所示: from pathlib import Path import pandas as pd pd.concat([pd.read_csv(i)...这篇文章主要盘点了一个Python自动化办公的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Pandas数据分析的问题,一起来看看吧。...她提供了原始数据demo,部分数据如下所示: 问题描述:大佬们请教个问题 有个df数据只有1列数据,每5行为一组,把他拆成5列N行数据这个怎么实现呀?...二、实现过程 这里【巭孬】给了一个思路:笨方法就是转成列表切片,再转成df就好。...确实还真没留意到有一列可以分组!...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
最近粉丝提问她在使用一个叫做pbcmc的R包的时候,遇到了如下所示的错误: 'pam50' is not an exported object from 'namespace:genefu' 也就是说...,这个pbcmc居然去责怪了 genefu 包,两个R包的地址: https://bioconductor.riken.jp/packages/3.3/bioc/html/pbcmc.html https...://bioconductor.org/packages/release/bioc/html/genefu.html 我去查看了叫做pbcmc的R包的源代码,发现里面大量使用两个冒号的语法: grep...,删除了所有的 genefu:: ,因为genefu 包的内置数据pam50这个变量本来就是加载即可调用,无需加上前缀 genefu:: 这样的话,pbcmc的R包的源代码修改后,重新安装,就成功了,...本来呢,我其实是应该去修改 genefu 这个包,让它 export里面的pam50这个数据,而不是修改 pbcmc的R包的源代码。不过,无所谓啊, 让他们两个包互相适应就好了。
1、最大行(按年龄)没有重复,比如这样: 2、最大行(按年龄)有重复,比如这样: 对于第1种情况,要筛选出来比较简单,直接用Table.Max函数即可(得到的是一个记录...,也体现了其结果的唯一性),如下图所示: 对于第2种情况,可以考虑用Table.SelectRows函数来进行筛选,即筛选出年龄等于源表(数据导入Power Query后做了类型更改,产生了...”更改的类型“步骤)中最大值(通过List.Max函数取得,主要其引用的是源表中的年龄列)的内容: 当然,第2种情况其实是适用于第1种情况的。
唯一的遗憾是不知道是谁写的…… 如果我理解的没有错误的话,写信人的需求应该是这个样子的: 他的原始数据: [8vd02y0quw.png] 处理后想要得到的数据: [1k3z09rele.png] 处理代码...rnorm(10),y2=rnorm(10),y3=rnorm(10),y4=rnorm(10)) dd library(data.table) melt(dd,id=1) 代码解释: 1,dd为模拟生成的数据框数据...,第一列为ID,其它几列为性状 2,使用的函数为data.table包中的melt函数 3,melt中,dd为对象数据框,id为不变的列数,这里是ID一列,列数所在的位置为1,其它几列都变成一列,然后列名变为行名...来信者需求: 怎么用R语言把表格CSV文件中的数据变成一列,并且行名为原列名呢,谢谢 1,csv文件,可以用fread函数读取,命名,为dd 2,数据变为一列,如果没有ID这一列,全部都是性状,可以这样运行...:melt(dd),达到的效果如下: [2dtmh98e89.png] 所以,就是一个函数melt的应用。
这是一个对我有特殊意义的教程,大约在一年半以前,我和朋友开始研究如何将多个数据集合并为一个数据集来分析,但是当时试了很多方法,效果不理想,再加上很多前辈告诉我很多人不认同这样合并多个数据集(因为会导致很多误差...然后最近因为疫情我又重新开始研究这段,终于给摸索出来一个还可以的教程并结合自己的数据集做了实例验证,效果挺满意的,所以想把这段教程写下来并总结以待后用。
这是一个对我有特殊意义的教程,大约在一年半以前,我和朋友开始研究如何将多个数据集合并为一个数据集来分析,但是当时试了很多方法,效果不理想,再加上很多前辈告诉我很多人不认同这样合并多个数据集(因为会导致很多误差...然后最近因为疫情我又重新开始研究这段,终于给摸索出来一个还可以的教程并结合自己的数据集做了实例验证,效果挺满意的,所以想把这段教程写下来并总结以待后用。 移除批次效应前 ? ? ?...因为目前合并多个测序、芯片数据集这一块并没有完全统一的标准,方法大概有五六种。公说公有理婆说婆有理,对于我这样的新手来说,最简单的是跟随顶级文章的文章思路或者分析流程和步骤。
copy:如果为 False,则不复制数据。...(2)merge中的两个合并对象只用逗号分隔,而concat中的两个合并对象要构成列表。 一对一连接:在起连接作用的关键列(employee)上,通过列值匹配进行合并。...suffixes:如果在合并过程中遇到了重叠的列名,则添加到重叠列名的后缀。 copy:如果为 False,则不复制数据。默认为 True。...pd.merge(df3,df7,how='left') how='right'指明连接方式是右连接,此时基于列值匹配时会全部保留右边数据集的记录。而左边数据集中不匹配的记录则不会被合并到结果中。...join方法就是基于索引进行的列合并,如果两个数据集有重复的列名,需指定lsuffix,rsuffix参数。
用go语言,已知一个n*n的01矩阵, 只能通过通过行交换、或者列交换的方式调整矩阵, 判断这个矩阵的对角线是否能全为1,如果能返回true,不能返回false。...我们升级一下: 已知一个n*n的01矩阵, 只能通过通过行交换、或者列交换的方式调整矩阵, 判断这个矩阵的对角线是否能全为1,如果不能打印-1。 如果能,打印需要交换的次数,并且打印怎么交换。...灵捷3.5 大体步骤如下: 1.遍历矩阵的每一行和每一列,统计每行和每列的1的个数。...2.如果某一行或某一列的1的个数超过n/2(n为矩阵的大小),则无法通过交换操作使得对角线上的元素全为1,直接输出-1。...3.创建一个长度为n的数组rowOnes和colOnes,分别存储每行和每列的1的个数。 4.创建一个长度为n的二维数组swap,用于记录交换操作。
领取专属 10元无门槛券
手把手带您无忧上云