首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python下的Pandas中DataFrame基本操作,基本函数整理

参考链接: Pandas DataFrame中的转换函数 pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。   ...构造函数    方法描述DataFrame([data, index, columns, dtype, copy])构造数据框    属性和数据    方法描述Axesindex: row labels...函数应用&分组&窗口    方法描述DataFrame.apply(func[, axis, broadcast, …])应用函数DataFrame.applymap(func)Apply a function...参考文献:     http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe          <link rel="stylesheet

2.5K00

python下的Pandas中DataFrame基本操作(一),基本函数整理

pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。...构造函数 方法 描述 DataFrame([data, index, columns, dtype, copy]) 构造数据框 属性和数据 方法 描述 Axes index: row labels;columns...函数应用&分组&窗口 方法 描述 DataFrame.apply(func[, axis, broadcast, …]) 应用函数 DataFrame.applymap(func) Apply a function...参考文献: http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

11.1K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据处理2、DataFrame的drop函数具体参数使用详情

    Pandas数据处理2、DataFrame的drop函数具体参数使用详情 ---- 目录 Pandas数据处理2、DataFrame的drop函数具体参数使用详情 前言 环境 基础函数的使用 drop...函数 编码测试 drop函数axis参数测试 axis=0 axis=1 drop函数index参数测试 drop函数columns参数测试 总结 ---- 前言         这个女娃娃是否有一种初恋的感觉呢...,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- drop...index:index是按照行删除时传入的参数,需要传入的是一个列表,包含待删除行的索引编号。 columns:columns是按照列删除时的参数,同样传入的是一个列表,包含需要删除列的名称。

    1.4K30

    【基础教程】Python input()函数:获取用户输入的字符串

    input() 是 Python 的内置函数,用于从控制台读取用户输入的内容。input() 函数总是以字符串的形式来处理用户输入的内容,所以用户输入的内容可以包含任何字符。...input() 函数的用法为: str = input(tipmsg) 说明: str 表示一个字符串类型的变量,input 会将读取到的字符串放入 str 中。...都只能以字符串的形式读取用户输入的内容。...Python 2.x input() 看起来有点奇怪,它要求用户输入的内容必须符合 Python 的语法,稍有疏忽就会出错,通常来说只能是整数、小数、复数、字符串等。...比较强迫的是,Python 2.x input() 要求用户在输入字符串时必须使用引号包围,这有违 Python 简单易用的原则,所以 Python 3.x 取消了这种输入方式。

    4.4K10

    怎么让Java输入字符串_怎么让Java获取用户输入的字符串

    public static void main(String[] args) { Scanner s = new Scanner(System.in); System.out.println(“请输入字符串...next()方法一定要读取到有效字符后才可以结束输入,对输入有效字符之前遇到的空格键、Tab键或Enter键等结束符,next()方法会自动将其去掉,只有在输入有效字符之后,next()方法才将其后输入的空格键...简单地说,next()查找并返回来自此扫描器的下一个完整标记。完整标记的前后是与分隔模式匹配的输入信息,所以next方法不能得到带空格的字符串。...而nextLine()方法的结束符只是Enter键,即nextLine()方法返回的是Enter键之前的所有字符,它是可以得到带空格的字符串的。...而nextLine只以换行(回车)才会结束输入。 从第二个结果看出,当你输入回车表示输入结束时,这个时候下一行的代码nextLine也结束了输入。而输入的结果是空的,就是个回车而已。

    1.4K20

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...选取第四列和第五列 DataFrame.iloc[1:3,3:5] DataFrame.iloc[[1,2],[3,4]]

    1.7K110

    Pandas库常用方法、函数集合

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...这里列举下Pandas中常用的函数和方法,方便大家查询使用。...qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...drop_duplicates: 删除重复的行 str.strip: 去除字符串两端的空白字符 str.lower和 str.upper: 将字符串转换为小写或大写 str.replace: 替换字符串中的特定字符...用于访问Datetime中的属性 day_name, month_name: 获取日期的星期几和月份的名称 total_seconds: 计算时间间隔的总秒数 rolling: 用于滚动窗口的操作 expanding

    31510

    pandas入门教程

    关于这一点,请自行在网络上搜索获取方法。 关于如何获取pandas请参阅官网上的说明:pandas Installation。 通常情况下,我们可以通过pip来执行安装: ?...索引未必一定需要是整数,可以是任何类型的数据,例如字符串。例如我们以七个字母来映射七个音符。索引的目的是可以通过它来获取对应的数据,例如下面这样: ? 这段代码输出如下: ?...当创建Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。可以通过下面的方式获取到DataFrame的列和行的Index对象: ? 这两行代码输出如下: ?...忽略无效值 我们可以通过pandas.DataFrame.dropna函数抛弃无效值: ? 注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。...为了便于操作,在填充之前,我们可以先通过rename方法修改行和列的名称: ? 这段代码输出如下: ? 处理字符串 数据中常常牵涉到字符串的处理,接下来我们就看看pandas对于字符串操作。

    2.2K20

    pandas 入门 1 :数据集的创建和绘制

    分析数据- 我们将简单地找到特定年份中最受欢迎的名称。 现有数据- 通过表格数据和图表,清楚地向最终用户显示特定年份中最受欢迎的姓名。...#导入本教程所需的所有库#导入库中特定函数的一般语法: ## from(library)import(特定库函数) from pandas import DataFrame , read_csv import...df.to_csv('births1880.csv',index=False,header=False) 获取数据 要导入csv文件,我们将使用pandas函数read_csv。...我们来看看这个函数以及它需要什么输入。 read_csv? 即使这个函数有很多参数,我们也只是将它传递给文本文件的位置。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

    6.1K10

    Pandas

    [:][m:n] DataFrame.head/tail():访问前/后五行 整数标签的特殊情况 为了防止计算机不知道用户输入的索引是基于位置还是基于标签的,pd 整数标签的索引是基于标签的,也就是说我们不能像列表一样使用...,axis=0):修改轴的名称 df.rename(mapper,axis=0/1):用于修改行或者列标签的名称,mapper指的是一种映射关系,可以写一个字典,也可以引入一个函数(函数的输入参数为要修改的标签的名称...的访问方式,既可以使用 se.index[2]获取行索引的值进行访问,也可以直接调用行索引值进行访问,不过比较方便的是,索引值可以是一个可以被翻译为日期的字符串(功能比较灵活,甚至可以输入年份的字符串匹配所有符合年份的数据...,在自定义函数时,我们使用agg时默认聚合函数的输入是一个数组,而apply的聚合函数的输入参数是一个DataFrame,我想这也一定程度上解释了为什么apply函数会更常用一些。...使用 transform 方法聚合数据 Pandas 提供了transform()方法对 DataFrame 对象和分组对象的指定列进行统计计算,统计计算可以使用用户自定义函数。

    9.2K30

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...通过将DataFrame的某一列转换为ndarray,并使用pd.Series()将其转换为pandas的Series数据格式,可以避免格式不一致的错误。...例如,我们有一个销售数据的DataFrame,其中包含了产品名称、销售数量和单价。现在我们希望计算每个产品的销售总额。...但是由于DataFrame的列包含了字符串(产品名称)和数值(销售数量和单价),我们无法直接进行运算。...我们希望通过计算​​Quantity​​列和​​Unit Price​​列的乘积来得到每个产品的销售总额。但是由于列中包含了不同的数据类型(字符串和数值),导致无法进行运算。

    53420

    Pandas 中最常用的 7 个时间戳处理函数

    现在让我们看几个使用这些函数的例子 1、查找特定日期的某一天的名称 import pandas as pd day = pd.Timestamp(‘2021/1/5’) day.day_name()...第一步是导入 panda 的并使用 Timestamp 和 day_name 函数。“Timestamp”功能用于输入日期,“day_name”功能用于显示指定日期的名称。...使用“date_range”函数,输入开始和结束日期,可以获得该范围内的日期。...‘data’] = np.random.randint(0, 100, size =(len(dat_ran))) print(df.head(5)) 在上面的代码中,使用“DataFrame”函数将字符串类型转换为...在创建dataframe并将其映射到随机数后,对列表进行切片。 最后总结,本文通过示例演示了时间序列和日期函数的所有基础知识。

    2K20

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    由于许多潜在的 Pandas 用户对 Excel 电子表格有一定的了解,因此本页旨在提供一些案例,说明如何使用 Pandas 执行各Excel电子表格的各种操作。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...查找字符串长度 在电子表格中,可以使用 LEN 函数找到文本中的字符数。这可以与 TRIM 函数一起使用以删除额外的空格。...按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。...填充柄 在一组特定的单元格中按照设定的模式创建一系列数字。在电子表格中,这将在输入第一个数字后通过 shift+drag 或通过输入前两个或三个值然后拖动来完成。

    19.6K20

    Pandas最详细教程来了!

    这里的索引是显式指定的。如果没有指定,会自动生成从0开始的数字索引。 列标签,表头的A、B、C就是标签部分,代表了每一列的名称。 下文列出了DataFrame函数常用的参数。...:索引/类似列表 | 使用的列标签;默认值为range(n) dtype:dtype | 使用(强制)的数据类型;否则通过推导得出;默认值为None copy:布尔值 | 从输入复制数据;默认值为False...date_range函数的参数及说明如下所示: start:字符串/日期时间 | 开始日期;默认为None end:字符串/日期时间 | 结束日期;默认为None periods:整数/None | 如果...其他的频率参数见下文 tz:字符串/None | 本地化索引的时区名称 normalize:布尔值 | 将start和end规范化为午夜;默认为False name:字符串 | 生成的索引名称 date_range...▲图3-27 可以看到,使用loc的时候,x索引和y索引都必须是标签值。对于这个例子,使用日期索引明显不方便,需要输入较长的字符串,所以使用绝对位置会更好。

    3.2K11

    数据导入与预处理-第4章-pandas数据获取

    Pandas中使用read_csv()函数读取CSV或TXT文件的数据,并将读取的数据转换成一个DataFrame类对象。...同时,我们除了可以输入列名外,还可以输入列对应的索引。比如:“id”、“name”、“address”、"date"对应的索引就分别是0、1、2、3。...Pandas中使用read_excel()函数读取Excel文件中指定工作表的数据,并将数据转换成一个结构与工作表相似的DataFrame类对象。...Pandas中使用read_json()函数读取JSON文件的数据,并将数据转换成一个DataFrame类对象。...需要注意的是,read_html()函数只能用于读取网页中的表格数据,该函数会返回一个包含网页中所有表格数据的列表。我们可通过索引获取对应位置的表格数据。

    4.1K31

    在Python如何将 JSON 转换为 Pandas DataFrame?

    使用 Pandas 从 JSON 字符串创建 DataFrame除了从JSON文件中读取数据,我们还可以使用Pandas的DataFrame()函数从JSON字符串创建DataFrame。...使用DataFrame()函数创建DataFrame:df = pd.DataFrame(data)在上述代码中,df是创建的Pandas DataFrame对象,其中包含从JSON字符串转换而来的数据...案例研究:从公开 API 获取 JSON 数据并转换为 DataFrame让我们提供一个实际案例,演示如何使用公开的API获取JSON数据,并将其转换为Pandas DataFrame。...我们介绍了使用Pandas的read_json()函数从JSON文件读取数据,以及使用DataFrame()函数从JSON字符串创建DataFrame。...通过将JSON转换为Pandas DataFrame,我们可以更方便地进行数据分析和处理。请记住,在进行任何操作之前,请确保你已正确导入所需的库和了解数据的结构。

    1.2K20

    针对SAS用户:Python数据分析库pandas

    导入包 为了使用pandas对象, 或任何其它Python包的对象,我们开始按名称导入库到命名空间。为了避免重复键入完整地包名,对NumPy使用np的标准别名,对pandas使用pd。 ?...df.columns返回DataFrame中的列名称序列。 ? 虽然这给出了期望的结果,但是有更好的方法。...缺失值对于数值默认用(.)表示,而字符串变量用空白(‘ ‘)表示。因此,两种类型都需要用户定义的格式。...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。...记录删除部分为0.009% 除了错误的情况,.dropna()是函数是静默的。我们可以在应用该方法后验证DataFrame的shape。 ?

    12.1K20

    Pandas vs Spark:获取指定列的N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到的获取指定列的多种实现做以对比。...无论是pandas的DataFrame还是spark.sql的DataFrame,获取指定一列是一种很常见的需求场景,获取指定列之后可以用于提取原数据的子集,也可以根据该列衍生其他列。...02 spark.sql中DataFrame获取指定列 spark.sql中也提供了名为DataFrame的核心数据抽象,其与Pandas中DataFrame有很多相近之处,但也有许多不同,典型区别包括..."A")):即首先通过col函数得到DataFrame中的单列Column对象,而后再用select算子得到相应的DataFrame。...注意,这里的col函数需要首先从org.apache.spark.sql.functions中导入; df.select("A"):即通过美元符"A"等价于col("A")。

    11.5K20
    领券