首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark 模型选择和调参

Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模型算法和...pipeline,内置的交叉验证和其他工具允许用户优化模型和pipeline中的超参数; 目录: 模型选择,也就是调参; 交叉验证; 训练集、验证集划分; 模型选择(调参) 机器学习的一个重要工作就是模型选择...pipeline的各个环节进行调试,使用者可以一次对整个pipeline进行调试而不是每次一个pipeline中的部分; MLlib支持CrossValidator和TrainValidationSplit等模型选择工具...需要计算3个模型的平均性能,每个模型都是通过之前的一组训练&测试集训练得到; 确认了最佳参数后,CrossValidator最终会使用全部数据和最佳参数组合来重新训练预测; 例子:通过交叉验证进行模型选择...([ (0, "a b c d e spark", 1.0), (1, "b d", 0.0), (2, "spark f g h", 1.0), (3, "hadoop

97653
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark SQL如何选择join策略

    前言 众所周知,Catalyst Optimizer是Spark SQL的核心,它主要负责将SQL语句转换成最终的物理执行计划,在一定程度上决定了SQL执行的性能。...在了解join策略选择之前,首先看几个先决条件: 1. build table的选择 Hash Join的第一步就是根据两表之中较小的那一个构建哈希表,这个小表就叫做build table,大表则称为...满足什么条件的表才能被广播 如果一个表的大小小于或等于参数spark.sql.autoBroadcastJoinThreshold(默认10M)配置的值,那么就可以广播该表。...最终会调用broadcastSide broadcastSide(buildLeft, buildRight, left, right) } 除了通过上述表的大小满足一定条件之外,我们也可以通过直接在Spark...Shuffle Hash Join 选择Shuffle Hash Join需要同时满足以下条件: spark.sql.join.preferSortMergeJoin为false,即Shuffle

    1.2K20

    推荐系统那点事 —— 基于Spark MLlib的特征选择

    在机器学习中,一般都会按照下面几个步骤:特征提取、数据预处理、特征选择、模型训练、检验优化。...那么特征的选择就很关键了,一般模型最后效果的好坏往往都是跟特征的选择有关系的,因为模型本身的参数并没有太多优化的点,反而特征这边有时候多加一个或者少加一个,最终的结果都会差别很大。...1.0| |[1.0,0.0,12.0,0.0]| 0.0| |[0.0,1.0,15.0,1.0]| 0.0| +------------------+-----+ ChiSqSelector 这个选择器支持基于卡方检验的特征选择...因此这个选择器就可以理解为,再计算卡方的值,最后按照这个值排序,选择我们想要的个数的特征。...参考 1 Spark特征处理 2 Spark官方文档 3 如何优化逻辑回归 4 数据挖掘中的VI和WOE 5 Spark卡方选择器 6 卡方分布 7 皮尔逊卡方检验 8 卡方检验原理

    1.3K90

    Spark机器学习——模型选择与参数调优之交叉验证

    spark 模型选择与超参调优 机器学习可以简单的归纳为 通过数据训练y = f(x) 的过程,因此定义完训练模型之后,就需要考虑如何选择最终我们认为最优的模型。...如何选择最优的模型,就是本篇的主要内容: 模型验证的方法 超参数的选择 评估函数的选择 模型验证的方法 在《统计学习方法》这本书中,曾经讲过模型验证的方法有三种,分别是简单的交叉验证,S折交叉验证,留一交叉验证...在Spark MLLib中,为我们提供了两种验证方法,分别是 Cross-Validation : S折交叉验证 Train-ValidationSplit:简单交叉验证 超参数的选择Spark MLLib...但是在Spark中,基于Validator可以一次性验证出来,并自动选择最后代价最小的那个。...用于多分类问题 详细的代码,可以参考: http://spark.apache.org/docs/latest/ml-tuning.html

    1.5K60

    Spark Streaming,Flink,Storm,Kafka Streams,Samza:如何选择流处理框架

    另外,结构化流媒体更加抽象,在2.3.0版本以后,可以选择在微批量和连续流媒体模式之间进行切换。连续流模式有望带来像Storm和Flink这样的子延迟,但是它仍处于起步阶段,操作上有很多限制。...像Spark一样,它也支持Lambda架构。但是实现与Spark完全相反。...如何选择最佳的流媒体框架: 这是最重要的部分。诚实的答案是:这取决于 : 必须牢记,对于每个用例,没有一个单一的处理框架可以成为万灵丹。每个框架都有其优点和局限性。...例如,在我以前的项目中,我已经在管道中添加了Spark Ba​​tch,因此,当流需求到来时,选择需要几乎相同的技能和代码库的Spark Streaming非常容易。...简而言之,如果我们很好地了解框架的优点和局限性以及用例,那么选择或至少过滤掉可用的选项就更加容易。最后,一旦选择了几个选项。毕竟每个人都有不同的选择

    1.8K41

    SparkSpark之what

    Spark按照功能侧重点划分为几个模块:Spark Core、Spark SQL、Spark Streaming、Spark MLlib、GraphX。...Spark Cluster Spark on Yarn Spark on Yarn-Client mode Spark on Yarn-Cluster mode 流程 基本流程 Spark一般流程...同时在SparkContent初始化中将创建DAGScheduler和TaskScheduler; (2) ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个...的命令、需要在Executor中运行的程序等; (2) ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container...为分布式数据集选择正确的分区方式和为本地数据集选择合适的数据结构很相似——在这两种情况下,数据的分布都会极其明显地影响程序的性能表现。

    86720

    SparkSpark之how

    函数(function) Java中,函数需要作为实现了Spark的org.apache.spark.api.java.function包中的任一函数接口的对象来传递。...(7) take:返回RDD中num个数量的元素,返回的顺序可能和预期的不一样 (8) top:返回RDD中最大的num个元素,但也可以根据我们提供的比较函数进行选择 (9) takeOrdered:根据你给的排序方法返回一个元素序列...Spark开发者们已经在Spark 中加入了一个日志设置文件的模版,叫作log4j.properties.template。...,默认在conf/spark-defaults.conf文件中,也可以通过spark-submit的- -properties自定义该文件的路径 (4) 最后是系统默认 其中,spark-submit的一般格式...Spark也会使用第三方序列化库:Kryo。需要设置spark.serializer为org.apache.spark.serializer.KryoSerializer。

    92220

    SparkSpark基础教程

    Spark最初由美国加州伯克利大学的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序。...Spark特点 Spark具有如下几个主要特点: 运行速度快:Spark使用先进的DAG(Directed Acyclic Graph,有向无环图)执行引擎,以支持循环数据流与内存计算,基于内存的执行速度可比...Hadoop MapReduce快上百倍,基于磁盘的执行速度也能快十倍; 容易使用:Spark支持使用Scala、Java、Python和R语言进行编程,简洁的API设计有助于用户轻松构建并行程序,并且可以通过...Spark Shell进行交互式编程; 通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件,这些组件可以无缝整合在同一个应用中,足以应对复杂的计算; 运行模式多样...:Spark可运行于独立的集群模式中,或者运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。

    62510

    Spark系列(一) 认识Spark

    怀念看论文的日子~/ 打算写一个Spark系列,主要以Scala代码实现,请赐予我力量吧!!! Spark的特点 运行速度:Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算。...spark生态圈:即BDAS(伯克利数据分析栈)包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX等组件,这些组件分别处理Spark Core提供内存计算框架...Spark的应用场景 基于Spark自身存在的一些特点和优势,Spark的应用场景如下: Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。...执行器节点 Spark 执行器节点是一种工作进程,负责在 Spark 作业中运行任务,任务间相互独立。...Spark 应用启动时,执行器节点就被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有执行器节点发生了异常或崩溃,Spark 应用也可以继续执行。

    91320
    领券