首页
学习
活动
专区
圈层
工具
发布

选择 GraphQL 的 N 个理由

我可以不用再写 SQL Server 代码 参考文献 选择它就是因为好用啊 GraphQL API 具有强类型模式 GraphQL schema 是一个约定,用于指明 API 的功能。...对于老式数据查询 API 返回的固定的数据结构,我们甚至要在前端进行额外的处理 Overfetching 即返回的数据多于我所需要的数据 老式 API 你有一个固定的后台可以接收特定的参数,根据参数决定返回的数据库数据...GraphQL 在前端的请求 query 中直接写我所需要的数据,这样就不会传过多的数据回来 Underfetching 即返回的数据少于我所需要的数据 老式 API 我很可能要在请求一个借口得到需要的数据...特别是类似于一些连接的数据 比如先获得用户的数据,然后需要再根据每一个用户请求一次后台获取用户的文章数据 这样明显就请求了多次 GraphQL 一次请求即可得到全部 支持快速产品开发 有很多对...API API 的拼接 可以自由的将多个 API 进行拼接 并且可以进行嵌套式的查询 有一个丰富的社区 Express 等多个框架都有相应的中间件 调试工具也随着会不断的增多 我可以不用再写 SQL

65420
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【GEE】8、Google 地球引擎中的时间序列分析【时间序列】

    1简介 在本模块中,我们将讨论以下概念: 处理海洋的遥感图像。 从图像时间序列创建视频。 GEE 中的时间序列分析。 向图形用户界面添加基本元素。...在这种情况下,我们在四个月的时间内选择图像。视频中将有大约 120 张图像。将以下代码添加到您的脚本中。...该ee.Filter.calendarRange()功能允许您按图像元数据(时间戳、日、月、年)中的时间元素进行过滤。在我们的例子中,我们选择的是在一年中的第四个月到第七个月之间拍摄的图像。...重要的是数据就在那里,只是需要付出努力。 7结论 在本模块中,我们开发了一种方法,使我们能够查看墨西哥湾藻类浓度的时间序列数据,以估计深水地平线漏油事件对该生态系统基础营养级的影响。...该系统的规模和复杂性表明,要得出有关实际影响的结论性结果将需要大量额外的工作。但是从这个过程中可以清楚地看出,GEE 提供了进行时间序列分析的计算能力和灵活性。

    84850

    Python中的时间序列分解

    时间序列分解是一种技术,它将时间序列分解为几个部分,每个部分代表一个潜在的模式类别、趋势、季节性和噪声。在本教程中,我们将向您展示如何使用Python自动分解时间序列。...首先,我们来讨论一下时间序列的组成部分: 季节性:描述时间序列中的周期性信号。 趋势:描述时间序列是随时间递减、不变还是递增。 噪音:描述从时间序列中分离出季节性和趋势后剩下的东西。...我们可以将模型设为加的或乘的。选择正确模型的经验法则是,在我们的图中查看趋势和季节性变化是否在一段时间内相对恒定,换句话说,是线性的。如果是,那么我们将选择加性模型。...同样,我们可以一次绘制每个组件 result.plot() 总结 通常,在查看时间序列数据时,很难手动提取趋势或识别季节性。...幸运的是,我们可以自动分解时间序列,并帮助我们更清楚地了解组件,因为如果我们从数据中删除季节性,分析趋势会更容易,反之亦然。 作者:Billy Bonaros deephub翻译组

    2.5K60

    MATLAB中的时间序列分析

    MATLAB中的时间序列分析时间序列分析是统计学和数据科学中的一个重要领域,它涉及对时间序列数据的建模和预测。MATLAB作为一种强大的计算和可视化工具,为时间序列分析提供了丰富的功能和工具箱。...时间序列数据的导入与预处理在进行时间序列分析之前,首先需要导入和预处理数据。以下是一个示例,展示如何导入时间序列数据并进行基本的预处理。....^2);fprintf('均方误差: %.4f\n', mse);6. 时间序列分析中的假设检验在时间序列分析中,进行假设检验是非常重要的一步,以确保数据适合所选模型。以下是一些常见的假设检验方法。...时间序列的季节性分解时间序列分析中的一个重要方面是季节性分解,它有助于识别数据中的季节性模式。MATLAB提供了函数 decompose 来进行季节性分解。...模型选择与评估在进行时间序列建模时,选择合适的模型至关重要。可以通过信息准则(如AIC、BIC)来评估不同模型的优劣。

    63210

    linux中删除文件的最后N行小总结

    现在,假设我们要从rumenz.txt文件中删除最后三行 ( n=3 ) 。...-n选项(例如-n -x来打印文件中除最后x行之外的所有行 因此,我们可以使用此选项以直接的方式解决我们的问题: $ head -n -3 rumenz.txt 1 rumenz.com 2 rumenz...但是,如果我们可以颠倒输入文件中的行顺序,问题就会变成从文件中删除前 n 行。一个简单的 sed 单行sed 1,n d可以删除前n行。之后,如果我们再次反转线条,我们的问题就解决了。...是如何工作的: -v n=3:声明了一个awk变量 n=3 NR==FNR{total=NR;next}:这是第一遍。...在这个过程中,awk命令将当前行号保存到一个名为total的变量中。第一遍后,total变量保存了输入文件中的总行数 FNR==total-n+1{exit} 1:这是第二遍。

    9.1K10

    时间序列中的特征选择:在保持性能的同时加快预测速度

    在项目的第一部分中,我们必须要投入时间来理解业务需求并进行充分的探索性分析。建立一个原始模型。可以有助于理解数据,采用适当的验证策略,或为引入奇特的想法提供数据的支持。...为了进行实验,我们模拟了多个时间序列,每个小时的频率和双季节性(每日和每周)。此外我们还加入了一个从一个平滑的随机游走中得到的趋势,这样就引入了一个随机的行为。...这个时序数据的最后一部分是用作测试使用的,我们会记录其中测量预测误差和做出预测所需的时间。对于这个实验模拟了100个独立的时间序列。...我们使用目标的滞后值作为输入来预测时间序列。换句话说,为了预测下一个小时的值,我们使用表格格式重新排列了以前可用的每小时观测值。这样时间序列预测的特征选择就与标准的表格监督任务一样。...它简化了有意义的自回归滞后的识别,并赋予了使用时间序列操作特征选择的可能性。最后我们还通过这个实验发现了如何通过简单地应用适当的滞后选择来减少预测的推理时间。

    98520

    时间序列中的特征选择:在保持性能的同时加快预测速度

    当我们对数据建模时,首先应该建立一个标准基线方案,然后再通过优化对该方案进行修改。在项目的第一部分中,我们必须要投入时间来理解业务需求并进行充分的探索性分析。建立一个原始模型。...为了进行实验,我们模拟了多个时间序列,每个小时的频率和双季节性(每日和每周)。此外我们还加入了一个从一个平滑的随机游走中得到的趋势,这样就引入了一个随机的行为。...这个时序数据的最后一部分是用作测试使用的,我们会记录其中测量预测误差和做出预测所需的时间。对于这个实验模拟了100个独立的时间序列。...我们使用目标的滞后值作为输入来预测时间序列。换句话说,为了预测下一个小时的值,我们使用表格格式重新排列了以前可用的每小时观测值。这样时间序列预测的特征选择就与标准的表格监督任务一样。...它简化了有意义的自回归滞后的识别,并赋予了使用时间序列操作特征选择的可能性。最后我们还通过这个实验发现了如何通过简单地应用适当的滞后选择来减少预测的推理时间。

    91820

    测试时间序列的40个问题

    A) 朴素法 B) 指数平滑 C) 移动平均 D) 以上都不是 解决方案:(D) 朴素法:一种估计技术,在这种技术中,最后一个时期的实际情况被用作这一时期的预测,而不加以调整或试图确定因果因素,适用于比较稳定的序列...模型1:决策树模型 模型2:时间序列回归模型 在对这两个模型进行评估的最后,你发现模型2比模型1更好。...36)下图显示了n = 60个观测值的时间序列的估计自相关和部分自相关。基于这些图,我们应该____....对序列求差分以获得平稳序列是唯一的选择。 37-38 37)使用上面给出的估计指数平滑度,并预测接下来3年(1998-2000年)的温度 这些结果总结了简单指数平滑与时间序列的拟合。...当p = 0时,表示序列中不存在自相关。当p = 1时,表示序列自相关到一个滞后。 积分:在ARIMA时间序列分析中,积分用d表示。积分是微分的倒数。

    1.5K20

    时间序列预测任务的模型选择最全总结

    单步与多步的时间序列模型 在进入建模之前,最后一个重要的概念是单步模型与多步模型的概念。 有些模型在预测一个时间序列的下一个步骤时效果很好,但没有能力同时预测多个步骤。这些模型是单步模型。...举例来说,可以从CO2数据库中删除最后3年的数据,并使用剩余的40年数据来拟合模型。然后预测三年的测试数据,并在预测和过去三年的实际值之间衡量我们选择的评估指标。...在非时间序列数据中,测试集通常由随机选择的数据点产生。然而,在时间序列中,这在很多情况下是行不通的:当使用序列时,我们不能在序列中删除一个点而仍然期望模型能够工作。...因此,时间序列训练测试分割最好通过选择最后一期作为测试集来应用。这里的风险是,如果最后一期不是很可靠,则可能会出错。在最近的疫情期间,许多商业预测已经完全走样:基本趋势已经改变。...例如,可以设置一个时间序列拆分,使100个训练测试集,其中每个训练测试集使用三个月的训练数据和一天的测试数据。这对于本例理解时间序列中的模型选择原理来说,是可以的。

    5.9K43

    时间序列分析中的自相关

    什么是自相关以及为什么它在时间序列分析中是有用的。 在时间序列分析中,我们经常通过对过去的理解来预测未来。为了使这个过程成功,我们必须彻底了解我们的时间序列,找到这个时间序列中包含的信息。...自相关就是其中一种分析的方法,他可以检测时间系列中的某些特征,为我们的数据选择最优的预测模型。...对于时间序列,自相关是该时间序列在两个不同时间点上的相关性(也称为滞后)。也就是说我们是在用时间序列自身的某个滞后版本来预测它。...数学上讲自相关的计算方法为: 其中N是时间序列y的长度,k是时间序列的特定的滞后。当计算r_1时,我们计算y_t和y_{t-1}之间的相关性。 y_t和y_t之间的自相关性是1,因为它们是相同的。...因此在对该数据建立预测模型时,下个月的预测可能只考虑前一个值的~15个,因为它们具有统计学意义。 在值0处的滞后与1的完全相关,因为我们将时间序列与它自身的副本相关联。

    1.4K20

    时间序列分析中 5 个必须了解的术语和概念

    考虑我们从平稳时间序列中取两个区间,如下所示: 从时间 t 到时间 t + N 的 N 个观察 从时间 t + k 到 t + N + k 的另外 N 个观察 这两个区间的统计性质非常相似。...假设我们有一个平稳的时间序列,让我们从这个时间序列中取两个随机变量: Xₜ Xₜ ₊ ₖ k 是这两个随机变量之间的时间差。...比如我们想要计算滞后5的时间序列的自协方差系数有50个值(k=5和N=50)。 X₁vs X₆,X₂vs X₇,…,X₄₀vs X₄₅。然后把所有组合的总和除以50。...我们可以很容易地使用R中的acf程序计算中的自协方差系数。 让我们首先创建一个具有50个值的随机时间序列。...最后我们再对自相关做一个简单的解释,自相关的英文:Autocorrelation,最初看到这个词可能看不出什么含义,但是如果把它理解成 ”序列相关“就很好理解了,它是一个信号与其自身在不同时间点的互相关系度量

    1.5K10

    推荐系统中的时间序列分析

    在推荐系统中,时间序列分析可以帮助系统理解用户行为随时间变化的模式,从而提供更加个性化和准确的推荐。本文将详细介绍时间序列分析在推荐系统中的应用,包括项目背景、关键技术、实施步骤以及未来的发展方向。...推荐系统中的时间序列数据 用户行为数据:包括用户的点击、浏览、购买等行为,这些行为数据通常具有时间戳,构成时间序列数据。...时间序列分析的关键技术 时间序列分析在推荐系统中的应用涉及多个关键技术,包括数据预处理、模型选择、训练与评估等。以下是一些常用的时间序列分析技术和方法。...时间序列分析在推荐系统中的应用 A. 应用场景 个性化推荐:通过分析用户历史行为的时间序列数据,预测用户未来的兴趣和需求,提供个性化的推荐内容。...本文通过实例分析和代码部署过程,展示了如何将时间序列分析技术应用于推荐系统中。未来,随着技术的不断进步,时间序列分析在推荐系统中的应用将会更加广泛和深入,为用户提供更优质的推荐服务。

    66900

    变速中的“时间插值”选择

    一、定义 插值 是指在两个已知值之间填充未知数据的过程 时间插值 是时间值的插值 二、分类与比较 三、tip 光流法虽然很好,但是限制也很大,必须要 对比非常大 的画面,才能够实现最佳的光流效果,否则就会出现畸变现象...通常在加速之后突然实现短暂的光流升格,可以实现非常炫酷的画面。 光流能够算帧,但是实际上拍摄的时候还是 要尽可能拍最高的帧率 ,这样的话,光流能够有足够的帧来进行分析,来实现更加好的效果。...帧混合更多的用在快放上面。可实现类似于动态模糊的感觉,视觉上也会比帧采样要很多。 ---- [参考] 【剪辑中那些关于变速的技巧!】...https://zhuanlan.zhihu.com/p/40174821 【视频变速的时间插值方式核心原理,你懂吗?】...https://zhuanlan.zhihu.com/p/67327108 【更改剪辑的持续时间和速度】https://helpx.adobe.com/cn/premiere-pro/using/duration-speed.html

    4.9K10

    Python中的时间序列数据操作总结

    时间序列数据是一种在一段时间内收集的数据类型,它通常用于金融、经济学和气象学等领域,经常通过分析来了解随着时间的推移的趋势和模式 Pandas是Python中一个强大且流行的数据操作库,特别适合处理时间序列数据...在本文中,我们介绍时间序列数据的索引和切片、重新采样和滚动窗口计算以及其他有用的常见操作,这些都是使用Pandas操作时间序列数据的关键技术。...下面列出的是一些可能对时间序列有用的函数。...df = df.loc["2021-01-01":"2021-01-10"] truncate 可以查询两个时间间隔中的数据 df_truncated = df.truncate('2021-01-05...在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。

    4K61

    2022-07-17:1、2、3...n-1、n、n、n+1、n+2... 在这个序列中,只有一个数字有重复(n)。 这个序列是无序的,找到重复数字n。 这个序

    2022-07-17:1、2、3...n-1、n、n、n+1、n+2...在这个序列中,只有一个数字有重复(n)。这个序列是无序的,找到重复数字n。这个序列是有序的,找到重复数字n。...("测试结束");}// 为了测试// 绝对正确,但是直接遍历+哈希表,没有得分的方法fn right(arr: &mut Vec) -> i32 { let mut set: HashSet...无序数组,找重复数// 时间复杂度O(N),额外空间复杂度O(1)// 用快慢指针fn find_duplicate(arr: &mut Vec) -> i32 { if arr.len...一个结论 return slow;}// 符合题目要求的、无序数组,找重复数// 时间复杂度O(N),额外空间复杂度O(1)// 用异或fn find_duplicate2(arr: &mut Vec...一个结论 return ans;}// 符合题目要求的、有序数组,找重复数// 时间复杂度O(logN),额外空间复杂度O(1)fn find_duplicate_sorted(arr: &mut

    1K10
    领券