首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中的loc和iloc_pandas获取指定数据的行和列

大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...> 6] 结果: (6)也可以进行切片操作 # 进行切片操作,选择B,C,D,E四列区域内,B列大于6的值 data1 = data.loc[ data.B >6, ["B","C"...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

10K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    列存储、行存储之间的关系和比较

    索引 Join 索引 Time Analytic 索引 三行列存储比较 基于行的储存 基于列的存储 四列存储数据查询中的连接策略选择方法 引言 相关工作 定义 连接策略选择方法 简单下推规则 动态优化树...2.1列存储 不同于传统的关系型数据库,其数据在表中是按行存储的,Sybase IQ是通过表中的列来存储与访问数据的。...这里没有索引;数据都是尽可能多地保存在主存储器中,并在这里进行扫描。 3.2基于列的存储 基于列的访问存在的缺点是载入速度通常比较慢,因为源数据在外部来源中是以行或者记录的形式表示的。...本文结合简单规则和动态Huffman算法, 建立基于代价的连接策略选择模型, 针对不同情况处理列之间的连接。...定义 3 (连接) 同空间内由and 连接的两个操作、两个列的比较操作称为同空间列的连接; 不同空间两列间的操作称为不同空间列的连接。

    6.7K10

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    19.2K60

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

    63700

    SQL中的行转列和列转行

    而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...01 行转列:sum+if 在行转列中,经典的解决方案是条件聚合,即sum+if组合。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...,所以需要用一个if函数加以筛选提取;当然,用case when也可以; 在if筛选提取的基础上,针对不同课程设立不同的提取条件,并最终加一个聚合函数提取该列成绩即可。...02 列转行:union 列转行是上述过程的逆过程,所以其思路也比较直观: 行记录由一行变为多行,列字段由多列变为单列; 一行变多行需要复制,列字段由多列变单列相当于是堆积的过程,其实也可以看做是复制;

    7.2K30

    SQL 中的行转列和列转行

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...实际中,可能支付方式特别多,而且逻辑也复杂很多,可能涉及汇率、手续费等等(曾经做个这样一个),如果支付方式特别多,我们的CASE WHEN 会弄出一大堆,确实比较恼火,而且新增一种支付方式,我们还得修改脚本如果把上面的脚本用动态...这个是因为:对升级到 SQL Server 2005 或更高版本的数据库使用 PIVOT 和 UNPIVOT 时,必须将数据库的兼容级别设置为 90 或更高。

    5.5K20

    Boruta 和 SHAP :不同特征选择技术之间的比较以及如何选择

    当我们执行一项监督任务时,我们面临的问题是在我们的机器学习管道中加入适当的特征选择。只需在网上搜索,我们就可以访问讨论特征选择过程的各种来源和内容。 总而言之,有不同的方法来进行特征选择。...在每次迭代中,扩展版本由原始数据与水平连接的混洗列的副本组成。我们只维护在每次迭代中的特征: 比最好的随机排序特征具有更高的重要性; 比随机因素(使用二项式分布)好于预期。...我们开始拟合和调整我们的梯度提升(LGBM)。我们用不同的分裂种子重复这个过程不同的时间来覆盖数据选择的随机性。下面提供了平均特征重要性。 令人惊讶的是,随机特征对我们的模型非常重要。...我们将参数的调整与特征选择过程相结合。和以前一样,我们对不同的分裂种子重复整个过程,以减轻数据选择的随机性。对于每个试验,我们考虑标准的基于树的特征重要性和 SHAP 重要性来存储选定的特征。...SHAP + BORUTA 似乎也能更好地减少选择过程中的差异。 总结 在这篇文章中,我们介绍了 RFE 和 Boruta(来自 shap-hypetune)作为两种有价值的特征选择包装方法。

    2.5K20

    Boruta 和 SHAP :不同特征选择技术之间的比较以及如何选择

    当我们执行一项监督任务时,我们面临的问题是在我们的机器学习管道中加入适当的特征选择。只需在网上搜索,我们就可以访问讨论特征选择过程的各种来源和内容。 总而言之,有不同的方法来进行特征选择。...在每次迭代中,扩展版本由原始数据与水平连接的混洗列的副本组成。我们只维护在每次迭代中的特征: 比最好的随机排序特征具有更高的重要性; 比随机因素(使用二项式分布)好于预期。...我们开始拟合和调整我们的梯度提升(LGBM)。我们用不同的分裂种子重复这个过程不同的时间来覆盖数据选择的随机性。下面提供了平均特征重要性。 ? 令人惊讶的是,随机特征对我们的模型非常重要。...我们将参数的调整与特征选择过程相结合。和以前一样,我们对不同的分裂种子重复整个过程,以减轻数据选择的随机性。对于每个试验,我们考虑标准的基于树的特征重要性和 SHAP 重要性来存储选定的特征。...SHAP + BORUTA 似乎也能更好地减少选择过程中的差异。 总结 在这篇文章中,我们介绍了 RFE 和 Boruta(来自 shap-hypetune)作为两种有价值的特征选择包装方法。

    3.2K20

    MySQL中的行转列和列转行操作,附SQL实战

    MySQL是一款常用的关系型数据库,广泛应用于各种类型的应用程序和数据存储需求。在MySQL中,我们经常需要对表格进行行转列或列转行的操作,以满足不同的分析或报表需求。...本文将详细介绍MySQL中的行转列和列转行操作,并提供相应的SQL语句进行操作。行转列行转列操作指的是将表格中一行数据转换为多列数据的操作。在MySQL中,可以通过以下两种方式进行行转列操作。1....列转行列转行操作指的是将表格中多列数据转换为一行数据的操作。在MySQL中,可以通过以下两种方式进行列转行操作。1....在每个子查询中,pivot_column部分是列的名称,value_column则是该列的值。例如,假设我们有一个表格记录每月销售额,字段包括年份、月份和销售额。...结论MySQL中的行转列和列转行操作都具有广泛的应用场景,能够满足各种分析和报表需求。在实际应用中,可以根据具体的需求选择相应的MySQL函数或编写自定义SQL语句进行操作。

    18K20

    wm_concat()和group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别

    原标题:oracle的wm_concat()和mysql的group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别 前言 标题几乎已经说的很清楚了,在oracle中,concat...()函数和 “ || ” 这个的作用是一样的,是将不同列拼接在一起;那么wm_concat()是将同属于一个组的(group by)同一个字段拼接在一起变成一行。...wm_concat()和concat()具体的区别 oracle中concat()的使用 和 oracle中 “ || ” 的使用 这两个都是拼接字段或者拼接字符串的功能。...wm_concat()这个个函数的介绍,我觉得都介绍的不是很完美,他们都是简单的说 这个是合并列的函数,但是我总结的概括为:把同组的同列字段合并变为一行(会自动以逗号分隔)。...问题:现在要将同一个同学的所有课程成绩以一行展示,sql怎么写呢?

    8.9K50

    C++ 和 Java 中的默认虚拟行为有何不同及其异常处理的比较

    中的默认虚拟行为有何不同 方法的默认虚拟行为在 C++ 和 Java 中是相反的: 在 C++ 中,类成员方法默认是非虚拟的。...** 二、C++ 和 Java 中异常处理的比较 两种语言都使用try、catch和throw关键字进行异常处理,并且try、catch和free块的含义在两种语言中也相同。...以下是 Java 和 C++ 异常处理之间的差异。 1) 在 C++ 中,所有类型(包括原始类型和指针)都可以作为异常抛出。...如果在我们的 C++ 程序中出现任何异常,那么查找该特定异常将非常耗时,因为在 C++ 中unexpected() 并没有告诉我们异常发生在哪种类型和哪一行。...但是在 Java 中,如果系统生成的异常没有被捕获,那么 Java 运行时系统 (JVM) 会将异常对象移交给默认的异常处理程序,它基本上会打印名称、描述以及异常发生在哪一行。

    92620

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。... Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    地图可视化的艺术:深入比较Mapbox、OpenLayers、Leaflet和Cesium,不同场景下应如何选择地图库

    --------------------------------------------------------------------- 地图可视化的艺术:深入比较Mapbox、OpenLayers...、Leaflet和Cesium 在现代前端开发中,地图应用变得越来越重要,特别是在数据可视化、地理信息系统和移动应用中。...本文将详细比较四款流行的地图库:Mapbox、OpenLayers、Leaflet 和 Cesium,分析它们的特点、功能、开源情况、包体积、市场占有率、适宜人群与应用环境,并提供安装与基础使用代码示例...3、市场与应用人群 在航天、军事和高端可视化领域有一定市场占有率,适合需要高端 3D 地图渲染的开发者,如航空和国防。...fromDegrees(-75.59777, 40.03883), point: { pixelSize: 10, color: Cesium.Color.RED } }); 六、总结 选择合适的地图库取决于项目的需求

    38810

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    而在pandas中,我们可以通过将列名列表传递给DataFrame来完成列选择 ?...在pandas中也有类似的操作 ? 查找空值 在pandas检查空值是使用notna()和isna()方法完成的。...> 9; 在pandas中,我们选择应保留的行,而不是删除它们 tips = tips.loc[tips['tip'] <= 9] 五、分组 在pandas中,使用groupby()方法实现分组。...({'key': ['B', 'D', 'D', 'E'], ....: 'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1

    3.6K31

    Pandas库

    通过这些基础知识和资源,你可以逐步深入学习Pandas,从而在数据分析领域游刃有余。 Pandas库中Series和DataFrame的性能比较是什么?...在Pandas库中,Series和DataFrame是两种主要的数据结构,它们各自适用于不同的数据操作任务。我们可以对这两种数据结构的性能进行比较。...总结来说,Series和DataFrame各有优势,在选择使用哪种数据结构时应根据具体的数据操作需求来决定。如果任务集中在单一列的高效操作上,Series会是更好的选择。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...使用apply()函数对每一行或每一列应用自定义函数。 使用groupby()和transform()进行分组操作和计算。

    8410
    领券