维基百科是一座金矿,里面有列表,列表里面套着列表,甚至被套着的列表里面还套着列表。其中一个列表恰巧是Billboard最热门的100首单曲,它使我们能够很容易地浏览维基百科的数据。...#从wikipediaScrape.p文件中加载数据框,创建新的列,边抓取信息边填充 dfs =cPickle.load(open('wikipediaScrape.p', 'rb')) subjects...[subject] = float('NaN') # 与上面的tryInstance函数类似,尽可能抓取更多信息 # 捕获缺失异常,使用NaNs替代缺失值 # 另外,还有一个问题是tables难于管理。...')]) #返回所有抓取的信息 return infoColumns #对数据帧中所有的歌曲使用scraping函数 forsongIndex in xrange(0,dfs.shape[0...for keyin genreList.keys(): df[key] = 0 dfs =df.copy() # 对于genreList字典中每个流派匹配字符串,如果能匹配,则标志指定列,以便能够在后面输出布尔结果
Pandas 是一个用于数据操作和分析的开源 Python 库。它提供了高性能、易于使用的数据结构和数据分析工具。...+1 df['Age'] = df['Age'] + 1 print(df, end="\n\n") # 缺失值处理 填充缺失值 使用每列的均值填充缺失值 df['Age'].fillna(df['...) # 使用常数填充缺失值 df_filled_constant = df.fillna(0) print(df_filled_constant) # 使用前一个值(向前填充)填充缺失值 df_filled_ffill...= df.fillna(method='ffill') print(df_filled_ffill) # 使用后一个值(向后填充)填充缺失值 df_filled_bfill = df.fillna(...) # 使用每列的中位数填充缺失值 df_filled_median = df.fillna(df.median()) print(df_filled_median) # 仅填充特定列的缺失值 df
这意味着,保留数据的上下文并组合来自不同来源的数据 - 这两个在原始的 NumPy 数组中可能容易出错的任务 - 对于 Pandas 来说基本上是万无一失的。...对于 Python 的任何内置算术表达式,索引匹配是以这种方式实现的;默认情况下,任何缺失值都使用NaN填充: A = pd.Series([2, 4, 6], index=[0, 1, 2]) B =...''' 如果使用NaN值不是所需的行为,则可以使用适当的对象方法代替运算符来修改填充值。...2 9.0 3 5.0 dtype: float64 ''' 数据帧中的索引对齐 在DataFrames上执行操作时,列和索引都会发生类似的对齐: A = pd.DataFrame(rng.randint...1 -1.0 NaN 2.0 NaN 2 3.0 NaN 1.0 NaN 索引和列的保留和对齐意味着,Pandas 中的数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组中的异构和
属性命名不一致也会导致结果数据集中的冗余,属性命名会导致同一属性多次出现。例如,一个顾客数据表中的平均月收入属性就是冗余属性,显然它可以根据月收入属性计算出来。...观察上图可知,result是一个4行5列的表格数据,且保留了key列并集部分的数据,由于A、B两列只有3行数据,C、D两列有4行数据,合并后A、B两列没有数据的位置填充为NaN。...,可以取值为’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据...没有A、B两个列索引,所以这两列中相应的位置上填充了NaN。...重叠合并数据是一种并不常见的操作,它主要将一组数据的空值填充为另一组数据中对应位置的值。pandas中可使用combine_first()方法实现重叠合并数据的操作。
在《跟老齐学Python:数据分析》一书中,对DataFrame对象的各种常用操作都有详细介绍。本文根据书中介绍的内容,并参考其他文献,专门汇总了合并操作的各种方法。...没有任何匹配值的单元被填充为NaN。...这种追加的操作,比较适合于将一个DataFrame的每行合并到另外一个DataFrame的尾部,即得到一个新的DataFrame,它包含2个DataFrames的所有的行,而不是在它们的列上匹配数据。...将df2 追加到 df1 并打印结果: df_append = df1.append(df2, ignore_index=True) print(df_append) 使用append()将不匹配任何键上的...只有2列,第一列中缺少一个值: COL 1 COL 2 0 NaN O 1 O O 2 O O 下面用df_second中所有对应的值来填充df_first
现在,我们将创建一个“宽的”数据帧,其中行数按患者编号,列按观测编号,单元格值为得分值。...NaN 3 Jake Milner 24.0 m 2.0 62.0 4 Amy Cooze 73.0 f 3.0 70.0 # 创建一个缺失值填充的新列 df['location'] = np.nan...Cooze 73.0 f 3.0 70.0 NaN # 使用 postTestScore 的每个性别的均值填充 postTestScore 中的缺失 df["postTestScore"].fillna...也就是说,取前两个值,取平均值 # 然后丢弃第一个,再加上第三个,以此类推。...df = df[1:] # 使用标题变量重命名数据帧的列值 df.rename(columns = header) first_name last_name age preTestScore 1
_)说明示例A = fscanf(fileID,formatSpec) 将打开的文本文件中的数据读取到列向量 A 中,并根据 formatSpec 指定的格式解释文件中的值。...fscanf 函数在整个文件中重新应用该格式,并将文件指针定位在文件结尾标记处。如果 fscanf 无法将 formatSpec 与数据相匹配,将只读取匹配的部分并停止处理。...示例A = fscanf(fileID,formatSpec,sizeA) 将文件数据读取到维度为 sizeA 的数组 A 中,并将文件指针定位到最后读取的值之后。fscanf 按列顺序填充 A。...对于数值数据,这是已读取的值数。您可以将此语法与前面语法中的任何输入参数结合使用。示例全部折叠将文件内容读取到列向量中View MATLAB Command创建一个包含浮点数的示例文本文件。...formatSpec = '%d %f';sizeA = [2 Inf];读取文件数据并按列顺序填充输出数组 A。fscanf 在整个文件中重新使用格式 formatSpec。
如果传递索引,索引中与标签对应的数据中的值将被取出。...Series中的数据可以使用有序序列的方式进行访问。...DataFrame 使用字典列表作为数据创建DataFrame时,默认使用range(len(list))作为index,字典键的集合作为columns,如果字典没有相应键值对,其值使用NaN填充。...当指定columns时,如果columns使用字典键集合以外元素作为columns的元素,则使用NaN进行填充,并提取出columns指定的数据源字典中相应的键值对。...NaN (5)使用Series字典创建DataFrame 使用Series字典作为数据创建DataFrame时,得到的DataFrame的index是所有Series的index的并集,字典键的集合作为
仅当两个数组中的全部对应元素匹配时,该值才为True。...默认行为是为未对齐的序列结构生成索引的并集。 这是可取的,因为信息可以保留而不是丢失。 在本书的下一章中,我们将处理 Pandas 中缺失的值。 数据帧 数据帧是一个二维标签数组。...使用ndarrays/列表字典 在这里,我们从列表的字典中创建一个数据帧结构。 键将成为数据帧结构中的列标签,列表中的数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...请注意,对于前两行,后两列的值为NaN,因为第一个数据帧仅包含前三列。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。
数据探索和预处理是任何数据科学或机器学习工作流中的重要步骤。在使用教程或训练数据集时,可能会出现这样的情况:这些数据集的设计方式使其易于使用,并使所涉及的算法能够成功运行。...如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...第一种是使用.descripe()方法。这将返回一个表,其中包含有关数据帧的汇总统计信息,例如平均值、最大值和最小值。在表的顶部是一个名为counts的行。...条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。
导读:Pandas是日常数据分析师使用最多的分析和处理库之一,其中提供了大量方便实用的数据结构和方法。但在使用初期,很多人会不知道: 1.它能提供哪些功能? 2.我的需求应该用哪个方法?...数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...例如可以从dtype的返回值中仅获取类型为bool的列。 3 数据切片和切块 数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。...具体实现如表6所示: 表6 Pandas常用数据合并和匹配方法 方法用途示例示例说明merge关联并匹配两个数据框In: print(data2.merge(data1,on='col1',how='...)join关联并匹配两个数据框In: print(data1.join(data2,lsuffix='_d1', rsuffix='_d2')) Out: col1_d1 col2_d1 col3
2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...2.1.3填充缺失值 pandas中提供了填充缺失值的方法fillna(),fillna()方法既可以使用指定的数据填充,也可以使用缺失值前面或后面的数据填充。...该参数还支持 'pad’或’ffill’和’backfill’或’bfill’几种取值,其中’pad’或’ffill’表示将最后一个有效值向后传播,也就是说使用缺失值前面的有效值填充缺失值;'backfill...’或’bfill’表示将最后一个有效值向前传播,也就是说使用缺失值后面的有效值填充缺失值。...,可以取值为’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据
第一章可前往查看:《Pandas学习笔记01-基础知识》 pandas对象中的数据可以通过一些方式进行合并: pandas.concat可以沿着一条轴将多个对象堆叠到一起; pandas.merge可根据一个或多个键将不同...重置列名称 1.6.行数据追加到数据帧 这样做的效率一般,使用append方法,可以将Series或字典数据添加到DataFrame。...行数据追加到数据帧 字典数据追加到数据帧 In [27]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4}, ...: {'A': 5, '...字典数据追加到数据帧 2.merge merge可根据一个或多个键(列)相关同DataFrame中的拼接起来。...NaN 2.0 right_only 2.4.left_on和right_on 当我们想合并的两个数据出现没有公共列名的情况,可以用left_on和right_on分别指定左右两侧数据用于匹配的列
对齐和截止日期 基于值而不是计数的滚动计算窗口 时间间隔滚动均值 分割 拆分框架 创建一个数据框列表,根据包含在行中的逻辑进行分割。...NaN NaN 使用返回系列的数据框的滚动应用 滚动应用到多列,其中函数在返回系列之前计算系列的标量 In [163]: df = pd.DataFrame( .....: data=np.random.randn...对齐和截止日期 基于值而不是计数的滚动计算窗口 按时间间隔计算滚动均值 分割 分割一个框架 创建一个数据框列表,根据行中包含的逻辑进行分割。...这个例子展示了一个WinZipped文件,但是是在上下文管理器中打开文件并使用该句柄读取的一般应用。...此示例展示了一个 WinZipped 文件,但是是在上下文管理器中打开文件并使用该句柄进行读取的一般应用。
首先,可以通过isnull 和 notnull 方法查看有哪些NaN值,这两个方法返回的布尔值,指示该值是否是NaN值,结合sum 方法可以获取每列空值的数目以及总数。...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...,即取e列中最近的一个不为NaN值来填充接下去的NaN值 df["e"].fillna(method = 'ffill',inplace=True) # 原理同上,只是取e列中最近的一个不为NaN值并且它的上一个数值是...值的全部列 df.fillna(method = 'ffill',inplace=True, axis = 1) 也可以通过重新赋值的赋值来填充NaN值,即将一个series 赋值给df 的某一列 来达到删除...实际上就是对两个df 求交集还是并集的选择 # 外连接就是并集,内连接就是交集 3. merge() 方法 merge函数可以真正实现数据库的内外连接,且外连接还可以有左右连接的特性。
Data Analysis) 序列(Series) 数据帧(DataFrame) 重索引 删除条目 索引,选择和过滤 算术和数据对齐 函数应用和映射 排序和排名 带有重复值的轴索引 汇总和计算描述性统计量...是表格数据结构,包含列的有序集合。...每列可以是不同的类型。 DataFrame同时具有行索引和列索引,类似于Series的字典。行和列操作大致是对称实现的。 索引DataFrame时返回的列是底层数据的视图,而不是副本。...VA 5.0 NaN 缺失值可以设置为 NaN 以外的值: df_3.reindex(range(6, 0), fill_value=0) year state pop unempl 插入有序数据...NaN 2 -0.111226 NaN NaN -0.603347 NaN 使用算术方法,在列上广播并匹配行(axis = 0): df_10 a b c d 0 0.548814 1.132211
ljust() 等价于str.ljust,左对齐填充,并使用fillchar填充(默认为空格) rjust() 等价于str.rjust,右对齐填充,默认为空格 zfill() 等价于str.zfill...,找到的拆分数 n ,则追加 None 以填充到 n if expand=True 如果使用 expand=True ,Series 和 Index 调用者分别返回 DataFrame 和 MultiIndex...可调用对象传递正则表达式匹配对象,并且必须返回要使用的替换字符串。 n:int,默认 -1(全部)从一开始就更换的数量。 case:布尔值,默认无。...如果na_rep 为None,并且others 不是None,则在任何列(连接之前)中包含缺失值的行将在结果中具有缺失值。...要禁用对齐,请在 others 中的任何系列/索引/数据帧上使用 .values。
缺失值处理直接删除统计值填充统一值填充前后向值填充插值法填充预测填充KNN填充具体分析缺失数据可视化 缺失值处理 一般来说,未经处理的原始数据中通常会存在缺失值、离群值等,因此在建模训练之前需要处理好缺失值...代码实现 使用上面数据帧 df11 作为演示数据集,分别实现使用各个统计值填充缺失值。...代码实现 任然使用数据帧 df11 进行演示,实现统一值填充缺失值的应用。...理论部分 前后向值填充是指使用缺失值的前一个或者后一个的值作为填充值进行填充。...代码实现 仍然使用数据帧 df11 作为演示的数据集,实现前后向值填充。
需要重新格式化它,为该列表中的每个项目提供单独的行。 这是一个经典的行分割成列的问题。有许多的不同的方法来解决这个任务。其中最简单的一个(可能是最简单的)是Explode函数。...combine_first函数 combine_first函数用于合并两个具有相同索引的数据结构。 它最主要的用途是用一个对象的非缺失值填充另一个对象的缺失值。这个函数通常在处理缺失数据时很有用。...如果有一行缺少值(即NaN),用B列中同一行的值填充它。...如果我们想要使用3列,我们可以链接combine_first函数。下面的代码行首先检查列a。如果有一个缺失的值,它从列B中获取它。如果列B中对应的行也是NaN,那么它从列C中获取值。...在这种情况下,所有缺失的值都从第二个DataFrame的相应值(即同一行,同列)中填充。
指定一个 defaultdict 作为输入,其中默认值确定未明确列出的列的数据类型。...定义的列中的字符串值(按行)连接成单个数组并传递;3) 对每一行使用一个或多个字符串(对应于由 parse_dates 定义的列)调用 date_parser。...字段太少的行将在尾部字段中填充 NA 值。...na_rep 默认为 NaN,NA 值的表示 formatters 默认为 None,一个字典(按列)的函数,每个函数接受一个参数并返回一个格式化的字符串 float_format 默认为...为了避免向前填充缺失值,请在读取数据后使用 set_index 而不是 index_col。 解析特定列 在 Excel 中,用户经常会插入列进行临时计算,而您可能不想读取这些列。
领取专属 10元无门槛券
手把手带您无忧上云