智慧城管违规摆摊沿街晾晒识别检测系统通过opencv+python对现场画面中进行7*24小时不间断实时监测,当智慧城管违规摆摊沿街晾晒识别检测系统监测到沿街晾晒违规摆摊占道经营时,立即抓拍告警。...OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行。
前言 本文我们基于飞书开放平台提供了服务端SDK,来教下大家如何发送文本&富文本消息 代码示例 本文我们基于飞书开平提供的go-sdk进行展示,go-sdk的github地址为: https://github.com...fmt.Println(resp.RequestId()) } func sendPostMsgUseBuilder(client *lark.Client) { // 第一行 // 文本...larkim.MessagePostImage{ImageKey: "img_v2_a66c4f79-c7b5-4899-b5e3-622766c4f82g"} // 第二行 // 文本...os.Getenv("APP_ID"), os.Getenv("APP_SECRET") client := lark.NewClient(appID, appSecret) // 发送文本消息...sendTextMsg(client) // 发送富文本消息 sendPostMsgUseBuilder(client) } 运行后,机器人就会给指定的接受者发送两个消息,消息内容如下
Text Proposal Network)方法就是在场景中提取文字的一个效果较好的算法,能将自然环境中的文本信息位置加以检测。...所以检测的过程中 不妨引入一个类似数学上“微分”的思想,如下图5所示,先检测一个个小的、固定宽度的文本段。在后处理部分再将这些小文本段连接起来,得到文本行。...对比图如下,红色框是使用了side-refinement的,而黄色框是没有使用side-refinement方法的结果: 纵观整个流程,该方法的最大两点也是在于将RNN引入了文本检测之中,同时将待检测的结果利用...“微分”的思路来减少误差,使用固定宽度的anchor来检测分割成许多块的proposal.最后合并之后的序列就是我们需要检测的文本区域。...SIGAI 2018.5.25 [15] 机器学习在自动驾驶中的应用—以百度阿波罗平台为例(上) SIGAI 2018.5.29 [16] 理解牛顿法 SIGAI 2018.5.31 [17]【群话题精华
目录 文本检测概念初识 CTPN总体结构 特殊的anchor 双向LSTM RPN层 NMS 文本线构造算法 文本框矫正 损失函数 效果图 参考 文本检测概念初识 OCR(光学字符识别)是CV一个重要的研究领域...,OCR分成文本检测和文本识别两个步骤,其中文本准确检测的困难性又是OCR中最难的一环,而本文介绍的CTPN则是文本检测中的一个里程碑的模型。...文本检测有别于一般的目标检测,区别有以下几种:(1)一般的目标检测的每个目标一般是孤立的,所以每个目标的边界框都很明确,而对于文本检测中边界其实没有那么容易界定,因为文本(单词)其实是一个序列,在图像中每个单词中间是有空格的...(2)文本是一个序列,除去空间特征它还具有很重要的序列特征,它的上下文的序列信息对我们检测文本是有帮助的,而传统的目标检测提取的都是空间特征,自然效果不好。...效果图 这是去年做的银行卡号识别项目的效果图,可以看出CTPN对这种横向的文字检测效果还是很好的: ? 对于场景中的文本检测效果也是不错: ?
EAST由旷世科技于2017年发表在CVPR的关于自然场景文本检测的一篇文章。EAST是用来解决多方向文本检测的问题的一种思路。其核心思想体现在了以下几点。...采用了FCN这样一种多尺度融合的方法来进行特征的抽取,用于后续的像素级的文本区域的预测。 EAST能够直接打到倾斜文本检测的目的,能够完成自然场景下文本检测的任务。...支持旋转矩形框、任意四边形两种文本区域的标注形式。换句话说EAST在回归文本区域的时候包括了旋转矩形框、矩形框加旋转角或者任意四边形这样两种不同的区域检测的过程。...由于考虑了方向信息,可以检测出各个方向的文本。 由于感受野的问题,对较长的文本检测效果欠佳。 EAST模型网络结构 在上图中我们可以看到它主要采用了FPN的思想来提取多尺度的融合特征。...EAST模型效果图 针对于自然场景下的文本图片,EAST能够检测出不同方向,不同角度,不同背景,不同环境,不同字体等等各种条件下的文本区域。
项目相关代码 和预训练模型 、数据集 获取: 关注微信公众号 datayx 然后回复 文本检测 即可获取。
广而告之 SIGAI-AI学习交流群的目标是为学习者提供一个AI技术交流与分享的平台。 SIGAI特邀作者:海翎(视觉算法研究员) 青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么?...·WordSup方案中,采用半监督学习策略,用单词级标注数据来训练字符级文本检测模型。 下面用近年来出现的多个模型案例,介绍如何应用上述各方法提升图像文本检测的效果。...CTPN模型 CTPN是目前流传最广、影响最大的开源文本检测模型,可以检测水平或微斜的文本行。文本行可以被看成一个字符sequence,而不是一般物体检测中单个独立的目标。...,其训练出的模型对倾斜文本块检测效果更好。...根据开源工程中预训练模型的测试,该模型检测英文单词效果较好、检测中文长文本行效果欠佳。或许,根据中文数据特点进行针对性训练后,检测效果还有提升空间。
文本检测模型 文本检测模型的目标是从图片中尽可能准确地找出文字所在区域。...·WordSup方案中,采用半监督学习策略,用单词级标注数据来训练字符级文本检测模型。 下面用近年来出现的多个模型案例,介绍如何应用上述各方法提升图像文本检测的效果。...CTPN模型 CTPN是目前流传最广、影响最大的开源文本检测模型,可以检测水平或微斜的文本行。文本行可以被看成一个字符sequence,而不是一般物体检测中单个独立的目标。...根据开源工程中预训练模型的测试,该模型检测英文单词效果较好、检测中文长文本行效果欠佳。或许,根据中文数据特点进行针对性训练后,检测效果还有提升空间。...SIGAI 2018.5.25 [15] 机器学习在自动驾驶中的应用—以百度阿波罗平台为例(上) SIGAI 2018.5.29 [16] 理解牛顿法 SIGAI 2018.5.31 [17]【群话题精华
2.文本检测与识别技术发展历程图片文本识别俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印刷体或手写体文本进行读取识别...OCR技术中,印刷体的文本识别是最成熟的一个,因其开展最早。早在1929年就被欧美国家利用来处理大量的报刊杂志、文件和单据报表等。...经过40多年的发展和完善,文本识别技术更加成熟,逐步实现了信息处理的“电子化”。...,这是由于以上系统对印刷体文本形状变化(如文本模糊、笔划粘连、断笔、黑白不均、纸质质量差、油墨反透等等)的适应性和抗干扰性比较差造成的。...目前,印刷体汉字识别技术的研究热点已经从单纯的文本识别转移到了表格的自动识别与录入,图文混排和多语种混排的版面分析、版面理解和版面恢复,名片识别,金融票据识别和古籍识别等内容上。
本文使用 Zhihu On VSCode 创作并发布 在文本检测任务中,较少出现字符重合的情况(重合的字符人也认不出来啊),所以基于分割思想的文本检测算法也能得到很好的效果。 1....使用人工特征 文本检测领域常见的人工特征算法有两种:SWT和MSER,这些方法的效率比滑窗法更高,精度也更好。 SWT算法思路:图片中的文本都具有一致宽度的线条。...深度学习文本检测 深度学习算法在误检方便表现比传统方法要好。...另外,虽然文本检测中比较少有重合字符,却还是需要处理字符粘连的情况,所以各种深度学习的模型在得到连通域之后,都需要再进行一步特殊的后处理过程。实现字符实例之间的区分。...因为感受野的问题,EAST对长文本效果较差,有长文本检测需求的可以尝试AdvancedEAST。 PixelLink 网络结构如下: ?
3.1.2 基于分割的场景文本检测方法基于分割的自然场景文本检测方法主要是借鉴传统的文本检测方法的思想,先通过卷积神经网络检测出基本的文本组件,然后通过一些后处理的方式将文本组件聚集成一个完整的文本实例...Zhang 等人(2016)的工作首次将文本像素分类预测用于自然场景文本检测任务当中,该方法首先通过一个FCN 预测得到文本区域的分割显著图。然后利用MSER 检测算子在文本区域内提取候选字符。...文本片段级别定义为字符或者文本的一部分,这类文本检测方法通常是利用目标检测算法从图像中检测出这样的文本片段。然后根据特征相似性,通过一些后处理算法把检测出的文本片段拼接成完整的文本实例。...,但CTPN只能检测水平方向的文本。...Lyu 等人(2018a)则是提出了使用角点检测生成候选的四边形检测框,同时在整图级别进行逐像素分类得到文本的位置得分,随后两个结果相结合输出最后的文本检测结果。
AdvancedEAST AdvancedEAST是一种用于场景图像文本检测的算法,主要基于 EAST: An Efficient and Accurate Scene Text Detector,并且还进行了重大改进...,使长文本预测更加准确。...(欢迎关注“我爱计算机视觉”公众号,一个有价值有深度的公众号~) 优点 基于Keras,易于阅读和运行 基于EAST,一种先进的文本检测算法 易于训练模型 进行了重大改进,长文本预测更准确。...在作者的实验中,AdvancedEast获得了比East更好的预测准确性,特别是在长文本上。...检测示例: ? ? ? ? ? ? ? ? ? 项目地址: https://github.com/huoyijie/AdvancedEAST
为什么造轮子 全自动SQL注入点检测,市面上简直太多了,但我这个有优势,尤其在于盲注检测上,用了些最基础的机器学习知识,做文本内容相似度判断。 如下代码: 检测判断出method\id参数存在异常,如图。 通过我自己的burp插件,一键检测漏洞,method/id参数处存在异常,并且id参数存在sql注入漏洞,本章先聊异常检测。...list_html[0]是正常请求的响应包,通过以上代码判断,list_html存在异常,执行结果如图 可以判断出: list_html[2]和list_html[3] 存在异常, 原理就是设了个值80%的文本相似度...具体步骤, •步骤一: 用这list_html这五组数据进行标准化处理,也就是通过某种算法把文本内容转变成人看不懂,但是便于机器处理的数据矩阵。...其实本文最关键的就在这, sql盲注的检测基本已经没必要往下讲了,原理和异常检测一样....算了算了,还是拿注入举个例子,我这么懒的人呐... sql盲注检测 上面已经清楚了,method/id这两个参数通过
问题描述 数据集 关于数据 使用的损失函数 准备检测数据 准备识别数据 训练检测模型和识别模型 代码整合 显示结果 引用 问题描述 我们需要从任何图像(包含文本)检测文本区域,这个图像可以是任何具有不同背景的东西...在检测到图像后,我们也必须识别它。 FOTS的完整形式是快速定向文本点亮。可以在任何自然场景中检测和识别任何文本。 ?...现在这个任务可以用两个不同的部分检测和识别来完成。在检测部分检测场景中的文本区域,在识别部分识别文本,什么是文本?...在本文“FOTS”中,他们同时进行了检测和识别,这是端到端系统,意思是如果我们给出一个有文本的场景,那么它将返回检测到的文本区域,并对文本进行识别。...首先,他们提取特征图,用一些CNN检测文本区域,然后,他们在检测区域的序列解码的帮助下进行识别部分。
在实现之前文章提出的动态数据竞争检测方法之前,有以下几个人问题需要思考。 1. 如何动态监视程序的行为?...比较经典的动态二进制插桩平台包括Intel Pin,DynamoRIO以及Valgrind。Pin的话由于其良好的兼容性,丰富的API接口使得其使用更加广泛。...如何构建动态数据竞争检测平台 对于上述提到需要动态插桩并且监视的读写指令或是Pthread库函数,系统库函数等,这些行为发生的时候,可以将这些行为以事件的形式发送到检测器中,检测器根据不同的检测算法执行相关的数据竞争检测...因此,我们以一种事件驱动模式来构建我们的动态数据竞争检测平台。...[框架] 该平台有着非常良好的扩展性,基本的动态数据竞争检测器Detector包含公共的一些实现通过继承这个Detector就可以实现其他不同的动态数据竞争检测方法,为后续我们对这些数据竞争检测方法进行实验分析提供比较便利的途径
如果使用Centrifuge平台,则会出现更严重的错误,它允许远程攻击者完全控制设备,即使在事先不知道管理凭据的情况下。...我们使用固件映像的这些日子做的第一件事就是把它扔进了Centrifuge平台执行自动固件提取和漏洞分析。...更详细地检查解密的解压缩配置数据表明它以JSON格式存储,并且当WiFi配置设置(包括WiFi密码)以纯文本格式存储时,管理密码存储为MD5哈希: "ACCOUNT" : { "Pwd"...operation": "login", "encoded": strEncoded, "nonce": submitStr } 纯文本密码首先是...可能这是由于手动进行这种努力的耗时性质,因此这是使用诸如Centrifuge平台的自动化系统的优点。
Linux高级入侵检测平台- AIDE AIDE(Advanced Intrusion Detection...当管理员想要对系统进行一个完整性检测时,管理员会将之前构建的数据库放置一个当前系统可访问的区域,然后用AIDE将当前系统的状态和数据库进行对比,最后将检测到的当前系统的变更情况报告给管理员。...另外,AIDE可以配置为定时运行,利用cron等日程调度技术,每日对系统进行检测报告。 这个系统主要用于运维安全检测,AIDE会向管理员报告系统里所有的恶意更迭情况。...支持文件属性:文件类型,文件权限,索引节点,UID,GID,链接名称,文件大小,块大小,链接数量,Mtime,Ctime,Atime 支持Posix ACL,SELinux,XAttrs,扩展文件系统属性 纯文本的配置文件
图片3.常用的文本检测与识别方法3.1文本检测方法图片随着深度学习的快速发展,图像分类、目标检测、语义分割以及实例分割都取得了突破性的进展,这些方法成为自然场景文本检测的基础。...基于深度学习的自然场景文本检测方法在检测精度和泛化性能上远优于传统方法,逐渐成为了主流。图1 列举了文本检测方法近几年来的发展历程。...目前,根据检测文本对象的不同可以将基于深度学习的方法划分为基于回归的文本检测方法和基于分割的文本检测方法两大类,不同类别方法的流程如图所示。...图片3.1.1 基于回归的场景文本检测方法基于回归的自然场景文本检测方法主要是基于以深度学习为基础的目标检测技术或者实例分割技术,它将文本视为一种通用目标然后直接检测出整个文本实例。...,针对文本不同于通用目标的表现形进行专门的改进,使之能在文本检测领域取得更好的检测性能。
psenet核心是为了解决基于分割的算法不能区分相邻文本的问题,以及对任意形状文本的检测问题。...从上图(b)中可以看出基于回归的方式不能对弯曲文本做出很好的定位,而从(c)中可以看出基于语义分割的方式虽然可以定位弯曲文本,但是不容易将相邻的文本区分开来。...而(d)中采用本文提出的渐进式扩展算法能够较好的定位弯曲文本,并且能将不同文本实例区分开来。...其具体采用的方式是首先预测每个文本行的不同kernels,这些kernels和原始文本行具有同样的形状,并且中心和原始文本行相同,但是在尺度上是逐渐递增的,最大的kernel就是原始文本行大小。...S3同理,最终我们抽取图d中不同颜色标注的连通区域作为最后的文本行检测结果。 渐进式扩展算法的伪代码见下图: ? 其中T、P代表中间结果,Q是一个队列,Neighbor(.)代表p的相邻像素。
PSEnet核心是为了解决不能区分相邻文本的问题,以及对任意形状文本的检测问题。...PSEnet依然采用基于分割的方式,对文本行不同核大小做预测,然后采用渐进式扩展算法扩展小尺度kernel到最终的文本行大小。...因为在小尺度kernel之间存在比较大的margin,因此能够很好的区分相邻的文本行。...最终结果在icdar2015和icdar2017都取得了sota的效果,而其最大的亮点是在SCUT-CTW1500弯曲文本数据集上取得了超过先前最好算法6.37%的结果。...PSENet PANNet DBNet 三个文本检测算法异同 PSEnet 文本检测示例: ? ? ? ? ?
领取专属 10元无门槛券
手把手带您无忧上云