首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow实现Kmeans

然后今天要讲的Kmeans算法属于无监督算法,也就是说它的输入只要训练集没有标签的。说到Kmeans, 就不得不提什么是?简单说就是“合并同类项”,把性质相近的物体归为一,就是。...2,怎么衡量归在一的样本“性质”是不是相近?如果解决了这两个问题,那么简单的问题就解决了。 Kmeans是一种比较古老算法,但是应用非常广泛。(鬼知道,反正我没怎么用过~)。...当我们做完聚以后,每一最中心的那个点,我们叫做中心(centroids),的过程或者目标是:每个里面的样本中心的距离的平均值(menas)最小。...Kmeans就是这样的。。。。 下面是kmeans的目标函数,C是中心,卡方是所有训练数据。 ? Kmeans算法的步骤: 随机选择k个初始中心 ?...计算所有样本每个中心的距离,使得样本点到ci的距离比到cj的距离要更近,当i不等于j的时候。 更新中心C,使得ci是所有附近点的中心。 重复2,3,知道中心不再变化。

2.6K130
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pytorch实现Kmeans

    Kmeans是一种简单易用的算法,是少有的会出现在深度学习项目中的传统算法,比如人脸搜索项目、物体检测项目(yolov3中用到了Kmeans进行anchors)等。...一般使用Kmeans会直接调sklearn,如果任务比较复杂,可以通过numpy进行自定义,这里介绍使用Pytorch实现的方式,经测试,通过Pytorch调用GPU之后,能够提高多特征的速度。...init_points = x[init_row] self.centers = init_points while True: # 标记...(0)) self.centers = centers def representative_sample(self): # 查找距离中心点最近的样本,作为的代表样本...因为pytorch的矩阵运算接口基本是照着numpy写的,所以numpy的实现方式大概只需要将代码中的torch替换成numpy就可以了。

    4.2K41

    【机器学习】Kmeans算法

    ),需要实现的目标只是把相似的样本一起,即只是利用样本数据本身的分布规律。...二、kmeans原理 kmeans可以说是算法中最为常见的,它是基于划分方法的,原理是先初始化k个簇中心,基于计算样本与中心点的距离归纳各簇下的所属样本,迭代实现样本与其归属的簇中心的距离为最小的目标...可以凭先验知识、验证法确定取值); 2.针对数据集中每个样本 计算它 k 个簇中心的距离,并将其归属距离最小的簇中心所对应的中; 3.针对每个簇,重新计算它的簇中心位置; 4.重复迭代上面...面对非凸的数据分布形状时我们可以引入核函数来优化,这时算法又称为核 Kmeans 算法,是核方法的一种。...核方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到高位的特征空间中,并在新的特征空间中进行

    1.4K40

    Quantizing an image with KMeans clustering使用KMeans量化图片

    图片处理是方法应用中的一个重要的主题。 值得指出的是python中有很多很好的图片处理方法,scikit-image是scikit-learn的一个姐妹工程。...height and width, and the third dimension represents the RGB values for each image: 我们在这部分将要做些有趣的事情,目标是用方法模糊化一张图片...为了实际量化该图片,我们需要转换它为含有RGB值的768*1024,的二维数组,一个好的想法是,用一个三维空间上的数据和点来所见图片中颜色点的距离,这是一个简单的量化方法。...using silhouette distance that we reviewed in the Optimizing the number of centroids recipe: 现在我们开始处理...,首先我们导入cluster模型,并生成一个KMeans对象,我们将设置n_clusters=5以便我们有5个的组,或者说5种不同的颜色。

    1.1K00

    全面解析Kmeans算法(Python)

    ),需要实现的目标只是把相似的样本一起,即只是利用样本数据本身的分布规律。...二、kmeans原理 kmeans可以说是算法中最为常见的,它是基于划分方法的,原理是先初始化k个簇中心,基于计算样本与中心点的距离归纳各簇下的所属样本,迭代实现样本与其归属的簇中心的距离为最小的目标...可以凭先验知识、验证法确定取值); 2.针对数据集中每个样本 计算它 k 个簇中心的距离,并将其归属距离最小的簇中心所对应的中; 3.针对每个簇,重新计算它的簇中心位置; 4.重复迭代上面...面对非凸的数据分布形状时我们可以引入核函数来优化,这时算法又称为核 Kmeans 算法,是核方法的一种。...核方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到高位的特征空间中,并在新的特征空间中进行

    1.9K41

    Kmeans代码实现及优化

    云豆贴心提醒,本文阅读时间6分钟 这篇文章直接给出上次关于Kmeans的篮球远动员数据分析案例,最后介绍Matplotlib包绘图的优化知识。...代码分析: 表示在sklearn中处理kmeans问题,用到 sklearn.cluster.KMeans 这个。 X是数据集,包括2列20行,即20个球员的助攻数和得分数。...表示输出完整Kmeans函数,包括很多省略参数,将数据集分成簇数为3的。 输出预测结果,对X,20行数据,每个y_pred对应X的一行或一个孩子,成3标为0、1、2。...二、Matplotlib绘图优化 Matplotlib代码的优化: 1.第一部分代码是定义X数组,实际中是读取文件进行的,如何实现读取文件中数据再转换为矩阵进行呢?...使用cd ..去到C盘根目录,cd去到Anaconda的Scripts目录下,输入"pip install selenium"安装selenium相应的包,"pip install lda"安装lda包

    1.6K50

    机器学习认识KMeans算法)

    也即后同一的数据尽可能聚集一起,不同类数据尽量分离。 ◆ ◆ ◆ ◆ ◆ 什么是K均值算法 K均值算法是先随机选取K个对象作为初始的中心。...然后计算每个对象与各个种子中心之间的距离,把每个对象分配给距离它最近的中心。中心以及分配给它们的对象就代表一个。...一旦全部对象都被分配了,每个中心会根据中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。...◆ ◆ ◆ ◆ ◆ 使用K均值算法 from sklearn.cluster import KMeans #导入kmeans算法 y_pred = KMeans(n_clusters=2).fit_predict...每个的观察值是均等的,一共 210 个观察值,7个输入变量和1个输出变量。

    99840

    Spark MLlib之 KMeans算法详解

    我们知道了分类,这里重点介绍 3.KMeans算法的基本思想 KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。...K-Means算法主要分为三个步骤: (1)第一步是为待的点寻找中心; (2)第二步是计算每个点到中心的距离,将每个点离该点最近的中去; (3)第三步是计算每个中所有点的坐标平均值...4.过程演示 下图展示了对n个样本点进行K-means的效果,这里k取2: (a)未的初始点集; (b)随机选取两个点作为中心; (c)计算每个点到中心的距离,并离该点最近的中去...; (d)计算每个中所有点的坐标平均值,并将这个平均值作为新的中心; (e)重复(c),计算每个点到中心的距离,并离该点最近的中去; (f)重复(d),计算每个中所有点的坐标平均值...参考: Spark MLlib KMeans算法 作者:sunbow0

    2.2K60

    k means算法实例数据_Kmeans算法详解

    6、再次更新距离中心点最近的点 通过不断重复上述步骤直至无法再进行更新为止时完成。...步骤三、使用 K-means 算法进行。...股票文本示例: 我们可以注意文本中有许多空格,符号,数字以及一些语气词等影响的效果,因此我们采用github上的jieba分词对文本进行预处理,同时利用网上下的停用词文档结合正则表达式去除语气词和数字等...,其中i代表待的文本数量,j则代表词的数目。...()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i文本中的tf-idf权重 return weight ---- 步骤三、使用 K-means 算法进行 思想前面已经说过在此不再复述直接上代码

    87030

    机器学习算法之KMeans算法

    算法原理 指的是把集合,分组成多个,每个中的对象都是彼此相似的。K-means是中最常用的方法之一,它是基于点与点距离的相似度来计算最佳类别归属。...下图展示了一个算法的结果: ?...算法流程 (1)选择k个初始中心 (2)计算每个对象与这k个中心各自的距离,按照最小距离原则分配到最邻近 (3)使用每个中的样本均值作为新的中心 (4)重复步骤(2)和(3)直到中心不再变化...(5)结束,得到k个 算法的作用 算法可以将数据中相似度比较大的数据聚集在一起,并且此算法是无监督算法,没有任何标注成本。...且以KMean算法为基础,衍生了很多其他种类的算法如密度,谱等。在商业上,可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一消费者的消费模式或者说习惯。

    88320

    R语言之kmeans理论篇!

    前言 kmeans是最简单的算法之一,但是运用十分广泛。最近在工作中也经常遇到这个算法。kmeans一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚下数据的特点。...但是可以重复执行几次kmeans,选取SSE最小的一次作为最终的结果。 0-1规格化 由于数据之间量纲的不相同,不方便比较。...,表示效果不好。...由于kmeans具有一定随机性,并不是每次都收敛全局最小,所以针对每一个k值,重复执行30次,取并计算轮廓系数,最终取平均作为最终评价标准,可以看到如下的示意图, ?...可以发现原始分类中和中左边那一簇的效果还是拟合的很好的,右测原始数据就连在一起,kmeans无法很好的区分,需要寻求其他方法。 kmeans最佳实践 1.

    3.2K110

    python3 基于Kmeans 文本

    参考链接: Python 3中的文本分析 常规方法,分一下几步:  文本处理,切词、去停用词,文档向量(K值,中心,本节涉及的Kmeans方法中心暂时是随机生成,后面会有更新) 第一部分内容...那么模型训练好之后,接下来的是就是使用模型训练的向量,来完成Kmeans,那么这个是怎么做的尼? ...<= len(clf.labels_):     #         print(i, clf.labels_[i - 1])             i = i + 1         # 每个点,中心的距离之和...,依然看不出到底效果怎么样,是否把同一主题的文本成一,那么为了方便分析结果,我们将文本所属簇与文本内容,一起展示出来,一探究竟,看看具体属于哪一? ...下一章,我将继续写初始化质心的内容,如何设定Kmeans的初始化质心,以提升效果和性能!

    1.3K20

    使用 Kmeans实现颜色的分割

    之前分享过kmeans算法(传送门:数据挖掘算法—K-Means算法),这期分享一下使用 Kmeans实现颜色的分割,使用 L*a*b* 颜色空间和 K 均值自动分割颜色。...lab_he = rgb2lab(he); 步骤 3:用 K 均值对基于 'a*b*' 空间的颜色进行分类 是一种分离对象组的方法。K 均值将每个对象视为在空间中有一个位置。...K 均值要求您指定要划分的簇数和用于量化两个对象之间距离的距离度量。 由于颜色信息基于 'a*b*' 颜色空间,因此您的对象是具有 'a*' 和 'b*' 值的像素。...使用 imsegkmeans 对对象进行以分为三个簇。...nColors,'NumAttempts',3); 对于输入中的每个对象,imsegkmeans 会返回一个对应于簇的索引或标签。

    1.5K20
    领券