本文手把手教你使用X2Paddle将PyTorch、TensorFlow模型转换为PaddlePaddle模型,并提供了PaddlePaddle模型的使用实例。...模型需要先把PyTorch转换为onnx模型,然后转换为PaddlePaddle模型。...将TensorFlow模型转换 为PaddlePaddle模型 注:model.pb为TF训练好的模型,pb_model为转换为PaddlePaddle之后的文件。 1....注意 TensorFlow模型在导出时,只需要导出前向计算部分(即模型预测部分,不需要训练部分回传的网络结构)。...python work/X2Paddle_ISSUE/train.py 在本地终端输入以下代码将TF模型转换为PaddlePaddle模型: x2paddle --framework=tensorflow
模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。...环境准备 建议使用TensorFlow2.14,PaddlePaddle 2.6 docker pull tensorflow/tensorflow:2.14.0 Step1:From Paddle to...使用https://github.com/onnx/onnx-tensorflow pip install tensorflow-addons pip install tensorflow-probability...在model.pb目录下可以看到saved_model.pb Step3:From TensorFlow to tflite 参考https://www.tensorflow.org/lite/convert...Took 43775 microseconds. 2024-04-09 07:16:45.584171: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc
学习维度转换 shape 计算维度 tf.shape(input,name = None) 案例1 a = tf.constant([i for i in range(20)],shape =[2,2,5
学习维度转换 shape 计算维度 tf.shape(input,name = None) 案例1 a = tf.constant([i for i in range(20)],shape
有读者阅读了前面我分享Vnet网络的案例,在下载了我在百度云盘上训练好的模型后,想要将模型转成protocal buffer(pb)格式。...这其实不是特别难,为了方便大家学习,我简单的介绍一些如何进行模型转换。 废话不多说了,我直接上代码吧。 ?...我之前分享的案例中所有的模型都是.meta,.data和.index格式的,为了将这类模型格式转成pb格式的,第一步先导入metagraph(.meta里面保存的是我们在搭建神经网络模型结构),第二步导入训练好的权重数据...graph,第五步将冻结graph做为参数输出生成pb模型。...2D版本的VNet和3D版本的VNet的模型转换我都已经实现好了。感兴趣的朋友可以在github上看到详细的过程,如果大家觉得这个项目还不错,希望大家给个Star并Fork,可以让更多的人学习。
TensorFlow for Poets 2:谷歌的TFLite教程,重新训练识别花卉的模型。 这些示例和教程更侧重于使用预先训练的模型或重新训练现有的模型。但是用户自己的模型呢?...从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet...转换为TFLite 最后一步是运行toco工具,及TensorFlow Lite优化转换器。唯一可能令人困惑的部分是输入形状。...不要让TensorFlow为您做。由于我们在训练脚本中做了一些小改动,我们可以轻松填写每个转换工具中的不同选项。...转换服务器端模型以实现移动框架兼容性并非易事 - 在移动端机器学习的生命周期中,大量工程师要么停滞不前,要么将大部分时间花在将现有模型转换到移动设备上。
以BERT为代表的预训练模型是目前NLP领域最火热的方向,但是Google发布的 BERT 是Tensorflow格式的,这让使用pytorch格式 程序猿 们很为难。...为解决这个问题,本篇以BERT为例,介绍将Tensorflow格式的模型转换为Pytorch格式的模型。 1....工具安装 [image.png] 使用工具为:Transformers(链接),该工具对常用的预训练模型进行封装,可以非常方便的使用 pytorch调用预训练模型。...模型转换 下载google的 BERT 模型; 使用如下命令进行转换: export BERT\_BASE\_DIR=/path/to/bert/uncased\_L-12\_H-768\_A-12 transformers
TensorFlow Detection Model Zoo TensorFlow 目标检测预训练模型: Tensorflow Detection Model Zoo 1.1....TensorFlow 训练得到的模型是 .pb 后缀的二值文件,其同时保存了训练网络的拓扑(topology)结构和模型权重....TensorFlow 目标检测模型转换为 DNN 可调用格式 OpenCV DNN 模块调用 TensorFlow 训练的目标检测模型时,需要一个额外的配置文件,其主要是基于与 protocol buffers...常用目标检测模型转换 三种不同的 TensorFlow 目标检测模型转换脚本为: tf_text_graph_ssd.py tf_text_graph_faster_rcnn.py tf_text_graph_mask_rcnn.py...DNN 目标检测 - SSD 例示 与 TensorFLow 目标检测 API -SSD 例示 一样,检测测试下基于 OpenCV DNN 的 SSD 目标检测. [1] - 首先进行模型转换,如: python3
tensorflow支持14种不同的类型,主要包括:实数:tf.float32 tf.float64整数:tf.int8 tf.int16 tf.int32 tf.int64 tf.unit8...布尔:tf.bool复数:tf.complex64 tf.complex1281、tf.to_bfloat16函数将张量强制转换为bfloat16类型。...可能产生的异常:TypeError: If x cannot be cast to the float64.4、tf.to_float函数将张量强制转换为float32类型。...可能产生的异常:TypeError: If x cannot be cast to the float32.5、tf.to_int32函数将张量转换为int32类型。...可能产生的异常:TypeError: If x cannot be cast to the int32.6、tf.to_int64函数将张量转换为int64类型。
目录 1、tf.to_int32() 2、tf.to_float() ---- 1、tf.to_int32() tf.to_int32( x, name='ToInt32' ) 将张量转换为...一种形状与x相同的张量或稀疏张量,类型为int32 可能产生的异常: TypeError: If x cannot be cast to the int32. 2、tf.to_float() 将张量强制转换为
目前该框架为 TensorFlow 和 Caffe 模型提供转换工具,并且其它框架定义的模型很快也能得到支持。下图展示了该计算框架的整体结构: ?...模型加密与保护:模型保护是重要设计目标之一。支持将模型转换成 C++代码,以及关键常量字符混淆,增加逆向的难度。...模型格式 MACE 定义的定制化模型格式与 Caffe2 的类似,MACE 模型能由 TensorFlow 和 Caffe 输出的模型转化。...将模型计算图转换为 C++代码,并以第二种方式构建,而张量数据将在外部以第一种方式加载。...platform: tensorflow # support local path, http:// and https:// model_file_path: https://cnbj1
Core ML简介及实时目标检测,Caffe、Tensorflow与Core ML模型转换、Vision库的使用 转载请注明出处 https://cloud.tencent.com/developer/...user/1605429 本篇文章首先会简要介绍iOS 11推出的Core ML机器学习框架,接着会以实际的已经训练好的Caffe、Tensorflow模型为例,讲解coremltools转换工具的使用...Tensorflow、MXNet转换为mlmodel格式的模型,苹果官方也提供了一些mlmodel格式的深度学习模型,如VGG16、GooLeNet等用于ImageNet物体识别功能的模型,具体可在官网...predicted_feature_name模型输出类别名称,感觉没什么用 Tensorflow模型的转换 Tensorflow用的越来越多了,所以也需要了解一下转换方法,coremltools暂时还不支持...Tensorflow的转换,但苹果官方推荐使用tfcoreml进行转换,说实话,用起来没有转caffe的那么方便。
.load() 只能加载.npy文件,.restore() 只能加载 ckpt(checkpoint)文件。
---- 导入常见的模块 我们的第一步是导入模块: os 及zipfile 可以帮助我们评估模型的大小 tensorflow_model_optimization用于模型剪枝 load_model...加载保存的模型 当然还有tensorflow 和keras 最后,初始化 TensorBoard,这样我们就能将模型可视化: import os import zipfile import tensorflow...as tf import tensorflow_model_optimization as tfmot from tensorflow.keras.models import load_model from...这意味着一些权重在训练过程中被转换为零。模型变得稀疏,因此更容易压缩。稀疏模型也使推断更快,因为零可以跳过。 预定的参数是剪枝策略、块大小和池块类型。...mwitiderrick/Pruning-in-TensorFlowmwitiderrick/Pruning-in-TensorFlow 8-Bit Quantization and TensorFlow
前面介绍了模型的保存: [L1]TensorFlow模型持久化~模型保存 通过TensorFlow提供tf.train.Saver类提供的save函数保存模型,生成对应的四个文件,因为TensorFlow...1.模型载入 由于保存模型的时候TensorFlow将计算图的结构以及计算图上的变量参数值分开保存。所以加载模型我从计算图的结构和计算图上的变量参数值分别考虑。...仅加载模型中保存的变量 在[L1]TensorFlow模型持久化~模型保存中我们也提到了,add_model.ckpt.data-00000-of-00001文件是保存TensorFlow当前变量值,而...对于加载模型的操作TensorFlow也提供了很方便的函数调用,我们还记得保存模型时候将计算图保存到.meta后缀的文件中。那此时只需要加载这个文件即可: ?...有人会说在[L1]TensorFlow模型持久化~模型保存中不是说add_model.ckpt.meta文件保存了TensorFlow计算图的结构吗?
下面简单介绍通过tensorflow程序来持久化一个训练好的模型,并从持久化之后的模型文件中还原被保存的模型。简单来说就是模型的保存以及载入。...1 模型保存 下面用一个简单的例子来说明如何通过tensorflow提供的tf.train.Saver类载入模型: import tensorflow as tf #声明两个变量并计算他们的和 a...其实加不加都可以的,但是最好是还加上,因为Tensorflow模型一般都是保存在以.ckpt后缀结尾的文件中; 在代码中我们指定了一个目录文件,但是目录下会出现4个文件,那是因为TensorFlow会把计算图的结构和图上变量参数取值分别保存...当某个保存的TensorFlow模型文件被删除时,这个模型所对应的文件名也会从checkpoint文件中删除。这个文件是可以直接以文本格式打开的: ?...保存了一个新的模型,但是checkpoint文件只有一个 上面的程序默认情况下,保存了TensorFlow计算图上定义的全部变量,但有时可能只需要保存部分变量,此时保存模型的时候就需要为tf.train.Saver
参考文献Tensorflow 实战 Google 深度学习框架[1]实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow 常用保存模型方法 import tensorflow...tf.train.Saver() # 创建保存器 with tf.Session() as sess: saver.save(sess,"/path/model.ckpt") #保存模型到相应...ckpt文件 saver.restore(sess,"/path/model.ckpt") #从相应ckpt文件中恢复模型变量 使用 tf.train.Saver 会保存运行 Tensorflow...比如在测试或离线预测时,只需要知道如何从神经网络的输入层经过前向传播计算得到输出层即可,而不需要类似的变量初始化,模型保存等辅助节点的信息。...output_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, ['add']) # 将导出的模型存入文件中
转载请说明出处:TensorFlow (1) - 线性模型 原作者:Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube 需要导入的包 import...在 one-hot 编码中,只有对应类别的那个位置为 1,其余都为 0,我们可以使用以下代码将其转换为真实类别: data.test.cls = np.argmax(data.test.labels,...TensorFlow计算图 TensorFlow 使用计算图模型来构建神经网络。其主要流程是先建立好整个网络的计算图模型,然后再导入数据进行计算。...一个 TensorFlow 计算图包含以下几个部分: Placeholder: 占位符,用来读取用户输入与输出; Variable: 模型的变量,也称为参数,在计算过程中逐步优化...不同的是 Numpy 的计算是实时的,而 TensorFlow 只有在运行计算图时才会返回结果。 Cost Function 代价函数 代价函数用来评估模型的错误率。
Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析 移动平均法相关知识 原文链接 移动平均法又称滑动平均法、滑动平均模型法(Moving average...tf.train.ExponentialMovingAverage 函数定义 tensorflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型,他使用指数衰减来计算变量的移动平均值...=False, name="ExponentialMovingAverage"): decay是衰减率在创建ExponentialMovingAverage对象时,需指定衰减率(decay),用于控制模型的更新速度...decay设置为接近1的值比较合理,通常为:0.999,0.9999等 示例代码 import tensorflow as tf v1 = tf.Variable(0, dtype=tf.float32
1 模型转换 1.1安装模型转换工具 打开conda控制台,创建虚拟环境vino: conda create -n vino python=3.6 创建完成后,执行activate vino。...> pip install -r requirements_tf.txt 1.2 模型转换 以MobileNet为例,前往https://github.com/tensorflow/models/blob..._frozen.pb执行如下命令完成模型转换: python E:\OpenVINO\openvino_2019.3.334\deployment_tools\model_optimizer\mo_tf.py...] 其中bin文件是模型参数,xml文件是网络结构,mapping文件是模型转换前后计算节点映射关系。...注意,如果转换过程中出错了,可以尝试卸载Tenorflow,可能是因为Tensorflow版本问题,改为Tensorflow1.14-cpu版本,笔者这边使用1.14-cpu版本没有问题。