首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    浅谈深度学习在语音识别领域的应用

    深度学习在语音识别领域取得的成绩是突破性的。2009年深度学习的概念被引入语音识别领域,并对该领域产生了巨大的影响。在短短几年时间内,深度学习的方法在TIMIT数据集上将基于传统的混合高斯模型(gaussian mixture model,GMM)的错误率从21.7%降低到了使用深度学习模型的17.9%。如此大的提高幅度很快引起了学术界和工业界的广泛关注。从2010年到2014年间,在语音识别领域的两大学术会议IEEE-ICASSP和Interspeech上,深度学习的文章呈现出逐年递增的趋势。在工业界,包括谷歌、苹果、微软、IBM、百度等在内的国内外大型IT公司提供的语音相关产品,比如谷歌的Google Now、苹果的Siri、微软的Xbox和Skype等,都是基于深度学习算法。

    02

    智能语音扩展数字化服务

    广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。

    05

    倪捷:智能语音扩展数字化服务

    广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。

    02
    领券