2016年3月,谷歌宣布向第三方开放语音识别技术,在语音识别市场再掀波澜。 谷歌将通过全新的“谷歌云语音应用程序界面”(Google Cloud Speech API)开放服务,初期将免费提供,后期暂未确定。这可能让谷歌与其他语音识别专业公司产生直接竞争。谷歌已对语音识别技术作出大量研发投入,目前可对超过80种语言进行语音识别。有鉴于此,竞争将非常激烈。 然而,规模较小的公司仍能在语音识别领域拥有独特优势。因为谷歌的重点并非生物识别方面的语音技术。而由于物联网将语音识别作为便利的用户界面,所以语音识别有可能
2012 年,在深度学习技术的帮助下,语音识别研究有了极大进展,很多产品开始采用这项技术,如谷歌的语音搜索。这也开启了该领域的变革:之后每一年都会出现进一步提高语音识别质量的新架构,如深度神经网络、循环神经网络、长短期记忆网络、卷积神经网络等等。然而,延迟仍然是重中之重:自动语音助手对请求能够提供快速及时的反应,会让人感觉更有帮助。
AI 科技评论按:在近二十年来,尤其是引入深度学习以后,语音识别取得了一系列重大突破,并一步步走向市场并搭载到消费级产品中。然而在用户体验上,「迟钝」可以算得上这些产品最大的槽点之一,这也意味着语音识别的延迟问题已经成为了该领域研究亟待解决的难点。日前,谷歌推出了基于循环神经网络变换器(RNN-T)的全神经元设备端语音识别器,能够很好地解决目前语音识别所存在的延迟难题。谷歌也将这项成果发布在了官方博客上,AI 科技评论进行编译如下。
鸡尾酒会问题一直是语音识别领域中的重要研究课题。在一场人声嘈杂的鸡尾酒会上,人们难以专注于眼前正与自己交谈的那个人的声音。而对于语音识别算法而言,重叠语音信号会使识别准确率大幅降低,甚至有时无法识别出任何文字。
人工智能技术中,语音识别与图像识别最先实现商业化。不过,照目前情况看来,不管是语音识别还是图像识别,C端似乎都是其商业化进程中难以触碰的一个点。 就在昨天,谷歌的社交软件Allo被爆出将在本周上线,值
最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。
深度学习在语音识别领域取得的成绩是突破性的。2009年深度学习的概念被引入语音识别领域,并对该领域产生了巨大的影响。在短短几年时间内,深度学习的方法在TIMIT数据集上将基于传统的混合高斯模型(gaussian mixture model,GMM)的错误率从21.7%降低到了使用深度学习模型的17.9%。如此大的提高幅度很快引起了学术界和工业界的广泛关注。从2010年到2014年间,在语音识别领域的两大学术会议IEEE-ICASSP和Interspeech上,深度学习的文章呈现出逐年递增的趋势。在工业界,包括谷歌、苹果、微软、IBM、百度等在内的国内外大型IT公司提供的语音相关产品,比如谷歌的Google Now、苹果的Siri、微软的Xbox和Skype等,都是基于深度学习算法。
Google Research 软件工程师发表了可解决「鸡尾酒会效应」视觉-音频语音识别分离模型。 AI 科技评论按:人类很擅长在嘈杂的环境下将其他非重点的声响「静音」化,从而将注意力集中在某个特定人物身上。这也就是众所周知的「鸡尾酒会效应」,这种能力是人类与生俱来的。尽管对自动音频分离(将音频信号分离成单独的语音源)的研究已经相当深入,但它依旧是计算机研究领域上的一项巨大挑战。 Google Research 软件工程师 Inbar Mosseri 和 Oran Lang 于 4 月 11 日发表了一篇
识别延迟一直是设备端语音识别技术需要解决的重大问题,谷歌手机今天更新了手机端的语音识别技术——Gboard,重磅推出了一款端到端、全神经、基于设备的语音识别器,支持Gboard中的语音输入。通过谷歌最新的(RNN-T)技术训练的模型,该模型精度超过CTC,并且只有80M,可直接在设备上运行。
随着人工智能产品在生活中的渗透率越来越高,其中技术的发展也成为了众人关心的重点所在。作为人机自然交互的基本途径之一,近期以来,语音识别的发展不可谓不快速。 当下,诸如科大讯飞、百度等多家企业声称,其研发的语音识别技术已经达到了97%的准确率。而在日前,谷歌研究员公开表示其语音识别的错误率(将一个词语从语音转录成为文字时的错误率)自2012年以来已经降低了30%以上……纵观过去的2016年,谷歌、苹果和微软等多家科技巨头都公布了自己在语音识别上的进展和突破,而在接下来的时间里,语音识别也将是2017年的发展重
近日,著名的语音识别与图像处理解决方案提供商Nuance Communications(以下称Nuance)宣布,已经以2.15亿美元完成了对客户服务与互动解决方案提供商TouchCommerce的收
多语家庭正变得越来越普遍,有一些研究发现多语人口已经超过单语人口,而且这个数字还将继续增长。随着多语用户数量的不断增加,开发能够同时支持多种语言的产品比以往任何时候都更加重要。
在人工智能的辉煌进程中,语音识别技术无疑占据了一个至关重要的地位。从最初的简单命令识别到今日能理解复杂语境的智能助手,语音识别技术已经深入人类生活的各个角落。它不仅改变了我们与机器交流的方式,更开启了一个全新的互动时代。
机器学习的发展涉及到各个方面,从语音识别到智能回复。但这些系统中的“智能”实际上是如何工作的呢?还存在什么主要挑战?在本次讲座中将一一解答。 Google I/O 是由Google举行的网络开发者年会,Google I/O 2016 中围绕机器学习领域的突破性进展进行了探讨。 视频内容 CDA字幕组对该视频进行了汉化,附有中文字幕的视频如下: 大家好,欢迎来到讲座:关于机器学习的突破性进展。 我们探讨了谷歌对于 AI 的长期愿景,以及过去十年对机器学习的研究。这是十分重要的,因为所有用户都期待着奇迹发生。
据科技资讯网站zdnet(www.zdnet.com)报道,谷歌开发出了可在未联网的Nexus 5智能手机上实时运行的语音识别系统。该系统无需通过远程数据中心进行运算,所以在没有可靠网络的情况下亦可通过智能手机、智能手表或其他内存有限的电子设备使用语音识别功能。 谷歌的科研人员表示,研发该系统的目的是创建在本地运行的轻量级、嵌入式、准确度高的语音识别系统。轻量级是指这套系统仅20.3MB,而在搭载2.26GHz CPU和2GB内存的Nexus 5上测试时,系统在开放式听写任务中的错误率仅为13.5%。 当然
AI 科技评论按:把一段输入音频转换为一段文本的任务「自动语音识别(ASR)」,是深度神经网络的流行带来了极大变革的人工智能任务之一。如今常用的手机语音输入、YouTube 自动字幕生成、智能家电的语音控制都受益于自动语音识别技术的发展。不过,开发基于深度学习的语音识别系统还不是一个已经完善解决的问题,其中一方面的难点在于,含有大量参数的语音识别系统很容易过拟合到训练数据上,当训练不够充分时就无法很好地泛化到从未见过的数据。
内容概述:方言是语音识别技术发展中必须要迈过去的坎儿,那么如何让模型能够听懂和理解方言呢?使用优质的数据集是一种的方法,本文将介绍一个经典的方言录音数据集 TIMIT。
据调查发现,有52%的用户更希望使用生物或者其他新兴密码方式,而不再热衷于传统密码,并且有80%的用户相信生物特征识别方式会更安全。 用户的这种倾向正好为谷歌的Abacus计划铺了一条康庄大道,Abacus计划推出一种融合了生物特征识别技术(包括面部识别技术和语音识别技术)和地理位置信息的登录方式,也就是说不用输入传统的密码或者PIN码,就能登录。 大部分用户对于新密码方式的强烈渴求驱动于他们的懒惰,而谷歌废除密码计划也是基于用户的这种心理推动的。Abacus可将密码替换成对使用手机方式的综合分析,然后
【新智元导读】北京时间今天凌晨,谷歌的 I/O 大会第三天的论坛《人工智能和机器学习的过去、现在和未来》由谷歌云负责人 Diane Greene 做主持,嘉宾包括刚加入谷歌不久,负责谷歌云 AI 团队的李飞飞教授;谷歌的 Francoise Beaufays;谷歌 Fernanda Viegas,以及 Coursera 联合创始人、现 Alphabet 旗下号称要“治愈衰老”的 Calio 部门首席计算家 Daphne Koller。几位语音、视觉的专家,她们从各自的角度,结合实际例子,分析了 AI 和 M
机器之心原创 作者:李亚洲、李泽南、虞喵喵 在 Google I/O 首日的 Keynote 中,Google 公布了一系列新的硬件、应用和基础研究。自去年提出 AI First 战略,今年的大会上 Google 同样安排了不少与机器学习开发相关的内容,比如《教程 | 如何使用谷歌 Mobile Vision API 开发手机》。 今天是 Google I/O 的最后一天,一场讨论机器学习前沿研究与未来方向的 Session 同样不容错过。谷歌云人工智能与机器学习首席科学家李飞飞将与谷歌云部门主管 Dian
预先设置好两种语言,比如中文日文。然后你说中文,谷歌助手就用中文答你,她说日语,谷歌助手就用日语回她。
---- 新智元报道 来源:Google 编辑:小咸鱼 David 【新智元导读】谷歌发布年度旗舰手机Pixel 6和Pixel 6 Pro,谷歌自研的「Tensor」芯片成为最大亮点,三星5nm工艺打造,CPU性能比去年Pixel 5提升80%,GPU性能提升更是高达370%,大杯599美元,超大杯899美元。 那个深耕搜索引擎,智能手机操作系统,深度学习框架等等领域的硬核科技公司又鼓捣出新东西啦! 是的,10月20号,谷歌带来了最新的年度旗舰手机Pixel 6和Pixel 6 Pro。 不同
这次出手的,又是谷歌 AI 团队。刚刚,他们为旗下的一款手机输入法 Gboard (不要跟谷歌拼音输入法搞混了啊~)上线了新功能:离线语音识别。目前这一新功能,只能在其自家的产品 Pixel 系列手机上使用。
作者 | 刘燕 Nuance 已是没落的语音识别巨头,微软欲花 160 亿美元买下它,这笔交易值吗? 1微软拟斥资 160 亿美元收购 Nuance 北京时间 4 月 12 日,根据彭博社的报道,微软正在就收购全球最大语音识别公司 Nuance Communications Inc. 进行深入谈判。据悉,微软可能愿意为收购这家公司支付高达 160 亿美元(1049 亿元人民币)的收购价格。 报道称,两家公司之间的谈判“正在进行中”,尚未最终敲定。CNBC 援引知情人士消息称,交易可能最早于周日签署,最早于周
AI 科技评论按:医疗AI已经火热了很有一阵子了,计算机视觉相关研究的进步让医学图像辅助诊断改头换面,不仅准确率日新月异,医疗影像创业公司也已经遍地开花。 那么除了医疗影像之外,深度学习还能以别的方式
广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。
自亚马逊Echo大获成功之后,利用人工智能语音识别产品抢占智能家居入口,便火速升温,微软、谷歌、苹果、百度、暴风、小米等等国内外巨头,纷纷(或准备)推出搭载人工智能语音识别产品,试图抢滩智能家居入口高
机器之心专栏 作者:王泉、张帆 在今年的 Made By Google 大会上,谷歌公布了 Recorder 应用的自动说话人标注功能。该功能将实时地为语音识别的文本加上匿名的说话人标签(例如 “说话人 1” 或“说话人 2”)。这项功能将极大地提升录音文本的可读性与实用性。 谷歌于 2019 年为其 Pixel 手机推出了安卓系统下的录音软件 Recorder,对标 iOS 下的语音备忘录,并支持音频文件的录制、管理和编辑等。在此之后,谷歌陆续为 Recorder 加入了大量基于机器学习的功能,包括语音识
近日,阿里巴巴达摩院机器智能实验室语音识别团队,推出了新一代语音识别模型—— DFSMN,不仅被谷歌等国外巨头在论文中重点引用,更将全球语音识别准确率纪录提高至 96.04%(基于世界最大的免费语音识别数据库LibriSpeech)。
【新智元导读】国际知名市场研究公司Research and Markets 2016年5月4日发布报告《全球及中国语音产业报告,2015-2020》的修订版本。报告认为,随着语音在智能产业的应用不断加深,全球,以及中国的语音市场在接下来的5年当中仍将维持显著地增长,到2020年,全球语音市场规模预计将达到191.7亿美元。报告数据显示,尽管领头羊Nuance仍然占据着三成的市场份额,但是已经出现明显下滑趋势,其他科技巨头谷歌、微软、苹果和科大讯飞则获得了迅速的增长,全球市场份额分别为20.7%、13.4%、
识别「谁说了什么」,也就是「说话人分类」任务是自动理解人类对话音频的关键步骤。例如,在一个医生与患者的对话中,「患者」在回答医生的问题(「你经常服用心脏病药物吗?」)时说了「Yes」,这和医生用反问的语气说「Yes?」的含义截然不同。
“吴军、徐鹏、李志飞、陈果果、姚旭晨……这是一个有志青年从约翰霍普金斯大学离开之后,用 AI 改变世界的故事。”
金磊 发自 凹非寺 量子位 | 公众号 QbitAI AI成精,“逼疯”程序员;AI做高数,成绩超过博士;AI写代码,成功调教智能体…… 看多了这种故事,你是不是也觉得,AI太卷了,要上天了。 今天回归本源,讲点不那么玄幻的。AI为什么会进化?底层其实没有秘密,无非是语言、视觉等几大基本功。 其中,语言能力对AI的智能水平有决定性影响。视觉研究怎么“看”,语言研究“听”、“说”和“理解”。 对人类来说,“听”、“说”、“理解”相加,基本等于思维能力,对AI,道理也差不多。 最近,咨询机构Gartner发布《
以前,人们习惯于通过键盘和触控屏操控智能设备。未来三到五年,人们或许可以随时给身边智能设备、机器人下达指令,帮助订餐、订票,乃至端茶递水。过去,机器对语音识别度不高,对自然语言的语义更难以理解,阻碍了语音交互的应用。随着降噪技术、方言识别、远场识别、全双工交互、机器学习等技术的发展,使语音和语义识别理解有了大幅提升,让机器准确理解并执行人类指令成为可能。
腾讯云语音识别为开发者提供语音转文字服务的最佳体验。经公司内部微信、QQ 、腾讯视频、王者荣耀等大体量业务充分验证,也在大量互联网、金融、教育等领域的外部客户业务场景成功落地,日服务亿级用户。具有海量数据支撑、算法业界领先、支持语种丰富、服务性能稳定、抗噪音能力强、识别准确率高等优势。
对攻击语音识别系统的研究表明,某些隐藏的语音命令人类无法听见,但是这些声音却可以控制系统。在最近的一些实验中,研究者设计了一个完全听不见的攻击:DolphinAttack,通过将人声负载在高频载波上,可以通过Siri使iPhone发起FaceTime通话。
素来被认为是“人脸识别独角兽”——或者更宽泛一点说,“计算机视觉独角兽”的依图科技,公布了他们中文语音识别技术的最新突破,以及令人瞩目的产业布局。
你知道吗?人类每听20个词,其实就有一两个成为“漏网之鱼”。而在一段五分钟的对话中,这一数字达到了80。但对于我们而言,少听一两个词并不会影响我们对语意的理解,然而想象一下,计算机如果要完成这件事有多难? 去年,IBM已经在语音识别领域走到了一个新的里程碑:系统的错误率降低为6.9%;而AI科技评论了解到,近日IBM Watson的语音识别系统将这个数字降到了5.5%。 清华大学的邓志东教授此前在采访中向AI科技评论表示,只有AI技术达到人类水平,它才有商业化的可能性。技术越来越接近人类水平也一直是人工
原文链接 / https://ai.googleblog.com/2020/11/improving-on-device-speech-recognition.html
【编者按】由于“记忆单元”的优势,LSTM RNNs已经应用于Google、百度、科大讯飞的语音处理之中。最近,Google在其技术博客中自述了使用LSTM模型取代GMM模型实现语音转录的过程。文章尚未披露训练模型的具体步骤,但介绍了数据源的解决、建模的思想,并对目前尚未解决的问题进行解析,如错认“噪音”和转录标点符号,对希望尝试LSTM的团队有借鉴意义。 在过去的几年中,深度学习在世界计算机科学难题中表现出了卓越的成就,从图像分类、字幕添加到机器翻译,再到可视化模型技术。最近,我们宣布了在谷歌语音转录上使
在人工智能产业中,应用层是一个极大的部分,是人工智能技术最终的目的地。除了机器人、无人机和无人驾驶等硬件产品之外,人工智能的软件应用在单独商业化的同时,也在为这些硬件产品提供服务,像智能家居的语音控制
大数据文摘作品 记者:谭婧 如果说PC时代的搜索引擎成就了谷歌,造就了这家当今世界最大的数据公司,那么随着智能产品的普及,谁先用现象级产品掌握了语音的入口,谁就将成为AI时代的赢家。 而在今天,没有哪个入口能比得上月活用户即将达到10亿的微信。 亚马逊Amazon Echo、苹果Apple HomePod、谷歌Google Home “语音转换文字对(微信)用户来讲是很刚需的场景。”微信智聆技术团队告诉大数据文摘记者。确实,相比用“手”和“眼睛”,以及其他以手机和电脑为媒介的操作,“语言”无疑是人类最自
谷歌的工程师们经常被问到这样的一个问题——怎么上手用深度学习做语音识别或其它音频识别,比如关键词或指令? 目前,出现了一些很优秀的开源语音识别系统,例如Kaldi,就能把神经系统作为其中的一个模块。但其的高度复杂性,并不适合 解决简单问题的指南。更重要的是,对于新手而言,免费、公开可获取到的数据并不多,适合简单的关键词也不是很多。 为解决这一问题,谷歌的TensorFlow 和 AIY 团队创建了TensorFlow 和 AIY 团队创建了Speech Commands Dataset,即“语音命令数据
AI 研习社按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。 大会主题是“探索 AI 的潜力,把 AI 技术应用于实用
2014年,人工智能得到了前所未有的关注, Eron Musk和霍金的“人工智能恶魔论”在学术界和产业界引发了激烈争论;资本对这个方向也是趋之若鹜,截止到2004年,有超过20亿美元的风险投资流入到基
Voicera获1450万美元融资,智能语音真的前途无限吗?
AI科技评论按:本月 18 日,由美中技术与创新协会(Association of Technology and Innovation,ATI)主办的第一届“AI NEXT”大会在西雅图召开。本次会议的主要嘉宾包括:微软首席 AI 科学家邓力,微软院士黄学东,Uber 深度学习负责人 Luming Wang 等。华人之外,还有亚马逊 Alexa 首席科学家 Nikko Strom,微软小娜架构师 Savas Parastatidis 等业内知名专家。 大会主题是“探索 AI 的潜力,把 AI 技术应用于
领取专属 10元无门槛券
手把手带您无忧上云