首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

语音识别方法

是指将人类语音转换为可理解的文本或命令的技术。以下是一些常见的语音识别方法:

  1. 隐马尔可夫模型(Hidden Markov Model, HMM):HMM是一种统计模型,用于描述语音信号的生成过程。它将语音信号建模为一系列状态的转换,每个状态对应于语音信号的一个特征。HMM在语音识别中广泛应用,特别是在连续语音识别中。
  2. 深度神经网络(Deep Neural Network, DNN):DNN是一种人工神经网络,具有多个隐藏层。它可以通过训练大量的语音数据来学习语音信号的特征表示。DNN在语音识别中的应用已经取得了显著的进展,尤其是在大规模语音识别任务中。
  3. 循环神经网络(Recurrent Neural Network, RNN):RNN是一种具有循环连接的神经网络,可以处理序列数据。在语音识别中,RNN可以捕捉语音信号的时序信息,并用于建模语音信号的上下文关系。
  4. 融合方法:融合方法将多种语音识别方法结合起来,以提高识别准确率。例如,可以将HMM和DNN相结合,利用HMM建模语音信号的时序特性,再利用DNN学习语音信号的特征表示。

语音识别方法在许多领域都有广泛的应用,包括语音助手、语音控制、语音翻译、语音搜索等。在云计算领域,语音识别方法可以用于构建语音交互系统、语音搜索引擎等应用。

腾讯云提供了一系列与语音识别相关的产品和服务,包括腾讯云语音识别(Automatic Speech Recognition, ASR)、腾讯云语音合成(Text-to-Speech, TTS)等。您可以通过访问腾讯云官方网站(https://cloud.tencent.com/)了解更多关于这些产品的详细信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 干货 | 极限元算法专家:深度学习在语音生成问题上的典型应用 | 分享总结

    AI 科技评论按:深度学习在2006年崭露头角后,近几年取得了快速发展,在学术界和工业界均呈现出指数级增长的趋势;伴随着这项技术的不断成熟,深度学习在智能语音领域率先发力,取得了一系列成功的应用。 这次分享会中,雷锋网邀请到了中科院自动化所的刘斌博士。刘斌,中科院自动化所博士,极限元资深智能语音算法专家,中科院-极限元智能交互联合实验室核心技术人员,曾多次在国际顶级会议上发表论文,获得多项关于语音及音频领域的专利,具有丰富的工程经验。刘斌博士会与大家分享近年来深度学习在语音生成问题中的新方法,围绕语音合成和

    09

    重磅 | 从SwiftScribe说起,回顾百度在语音技术的七年积累

    人与机器的自然交互一直是人类孜孜不倦的奋斗目标。随着移动互联网时代的发展,声音与图片成为了人机交互更为自然的表达方式。作为最核心的入口,语音技术就成为了科技巨头们争相攻下的堡垒。而人工智能的进步与发展也让语音技术的识别率突飞猛进,也使其有了产品化的机会。 李彦宏曾在剑桥名家讲堂等多个公开场合说过,百度大脑涉及百度最为核心的人工智能内容,具体包括语音、图像、自然语言理解和用户画像等四个核心能力,此外还有机器学习平台;吴恩达也在公开场合演讲时表达了同样的观点。 3 月 14 日,百度硅谷研究院于推出了一款基

    013

    什么是模式识别,与数据挖掘,机器学习关系又如何?

    模式识别是对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 英文“Pattern”源于法文“Patron”,本来是指可作为大家典范的理想的人,或用以模仿复制的完美的样品。 在模式识别学科中“模式”具有更广泛的意义。 人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的相同或不同之处,根据一定的目的把并不完全的事物或现象组成一类。字符识别就是一个典型的例子。例如汉字“中”可以有各种写法,但都属于同一类别。更为重要的是,即

    07

    智能音箱大战全面开火,那么问题来了:如何成为一名全栈语音识别工程师?

    文 / 陈孝良 11月16号,百度发布了渡鸦智能音箱和DuerOS开发板SoundPi,至此,国内再一名巨头加入智能音箱大战。迄今为止,国内战场上的巨头有阿里、京东、腾讯、百度、小米、科大讯飞等,国外则有苹果、微软、亚马逊、谷歌、脸书、三星等,这些巨头占据了全球市值的排名榜,同时发力争夺未来人工智能时代的语音入口,甚至亚马逊和阿里率先不惜代价开启了补贴大战。这些全球巨头的激烈竞争,将对未来十年产生极其重要的影响,同时,这更是新一波的职业快速发展机会。 语音智能当前的核心关键是声学问题和语义理解,随着市

    012

    深度学习的昨天、今天和明天

    机器学习是人工智能领域的一个重要学科。 自从20世纪80年代以来, 机器学习在算法、理论和应用等方面都获得巨大成功。2006年以来, 机器学习领域中一个叫“ 深度学习” 的课题开始受到学术界广泛关注, 到今天已经成为互联网大数据和人工智能的一个热潮。 深度学习通过建立类似人脑的分层模型结构, 对输入数据逐级提取从底层到高层的特征, 从而能很好地建立从底层信号到高层语义的映射关系。 近年来,谷歌、微软、IBM、百度等拥有大数据的高科技公司相继投入大量资源进行深度学习技术研发, 在语音、图像、自然语言、在线广告等领域取得显著进展。从对实际应用的贡献来说, 深度学习可能是机器学习领域最近这十年来最成功的研究方向。将对深度学习发展的过去和现在做一个全景式的介绍, 并讨论深度学习所面临的挑战, 以及将来的可能方向。

    07
    领券