语音识别是一项非常重要的技术,它可以将人类的语音转化为计算机可以理解的形式。深度学习是一种非常强大的机器学习技术,它在语音识别方面也有广泛的应用。本文将详细介绍深度学习在语音识别方面的应用。
你或许会说,语音识别和机器翻译——没错,传统的语音翻译通常采用语音识别和机器翻译级联的方式实现,对输入语音先进行语音识别得到文本结果,然后再基于文本进行机器翻译,这也是当前语音翻译采用的主流方法。
本文对中科院宗成庆、张家俊团队完成、被 AAAI-20 录用的口头报告论文《Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding》进行解读。
继推出维吾尔语、粤语识别,近期,捷通华声联合中国民族语文翻译局,推出藏、彝、蒙、朝鲜语语音识别技术,为藏族、彝族、蒙古族、朝鲜族同胞的日常办公、沟通交流提供语音识别服务。 民族语言识别 为企事业单位办公、民众交流提供便利 灵云语音识别技术,已广泛应用于国内的企事业单位会议、公检法、医疗等领域。 通过应用灵云藏、彝、蒙、朝鲜语语音识别技术,少数民族企事业单位可以应用语音识别技术,识别日常工作会议发言,快速生成会议记录;地区公安、检察、法院等政法机构可以应用语音识别来转写办案过程中的讯问发言,快速生成办案笔录;
【新智元导读】 微软语音识别研究团队在黄学东的带领下,去年将语音识别的单词错误率降至5.9%,又在最近降至5.1%。在本次专访中,我们讨论了语音识别错误率百分之几的小数点在研究和实际应用上的意义。黄学东认为,从研究角度来说,这个意义十分重大,即便是0.1%的差距,无论是运算量还是时间,耗费都是巨大的。 达到人类水平,超越人类水平,人工智能研究领域的突破性进展。 以上赞誉被给予了微软最近的语音识别研究成果:其语音识别研究团队在黄学东的带领下,去年将语音识别的单词错误率降至5.9%,又在最近降至5.1%。 从研
免费开放微信AI团队在机器翻译,智能语音领域的业界领先成果,使开发者简便地在小程序中加入机器翻译,智能语音能力。
INTERFACE 分享者:陈伟、李健涛 机器之心报道 参与:李泽南 3 月 12 日,搜狗正式在线上平台发布了「旅行翻译宝」。这款随身翻译设备结合了搜狗神经网络机器翻译、语音识别、图像识别等多项技术,不仅支持语音、图像翻译等多种翻译模式,还提供中英日韩俄德等 18 种语言互译。 在深度学习快速发展的今天,机器翻译系统的能力究竟达到了什么样的水平?机器翻译是否已经可以代替人类翻译?3 月 17 日,机器之心与搜狗共同举办的 INTERFACE 线下分享中,搜狗语音交互技术中心研发总监陈伟、搜狗 IOT 事
作者 | 黄楠 编辑 | 陈彩娴 9月21日,OpenAI 发布了一个名为「Whisper 」的神经网络,声称其在英语语音识别方面已接近人类水平的鲁棒性和准确性。 「Whisper 」式一个自动语音识别(ASR)系统,研究团队通过使用从网络上收集的68万个小时多语音和多任务监督数据,来对其进行训练。 训练过程中研究团队发现,使用如此庞大且多样化的数据集可以提高对口音、背景噪音和技术语言的鲁棒性。 此前有不同研究表明,虽然无监督预训练可以显著提高音频编码器的质量,但由于缺乏同等高质量的预训练解码器,以及特定于
随着神经机器翻译的兴起,基于Attention的Seq2Seq模型由于其强大的建模变长序列直接转换问题的能力,也在其他领域获得了极大的关注。语音识别问题本质上也是两个变长序列直接转换的问题,Seq2Seq模型的提出为解决语音识别问题开辟了另一条道路,其优雅的模型结构和强大的性能使得语音识别问题有希望彻底摆脱语言模型和发音词典,真正的进行端到端的联合优化。
自然语言处理领域正在从统计方法转变为神经网络方法。 自然语言中仍有许多具有挑战性的问题需要解决。然而,深度学习方法在一些特定的语言问题上取得了最新的成果。这不仅仅是深度学习模型在基准问题上的表现,基准问题也是最有趣的;事实上,一个单一的模型可以学习词义和执行语言任务,从而消除了对专业手工制作方法渠道的需要。 在这篇文章中,你会发现7个有趣的自然语言处理任务,也会了解深度学习方法取得的一些进展。 文本分类 语言建模 语音识别 字幕生成 机器翻译 文档摘要 问答(Q&A) 我试图专注于你可能感兴趣的各种类型的终
通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:
语音识别(speech recognition)技术,也被称为自动语音识别(英语:Automatic Speech Recognition, ASR)、电脑语音识别(英语:Computer Speech Recognition)或是语音转文本识别(英语:Speech To Text, STT),其目标是以电脑自动将人类的语音内容转换为相应的文字。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在通过搭建产学合作平台,连接产业实践问题与学术科研问题,支持海内外优秀青年学者开展与产业结合的前沿科研工作。 2018年CCF-腾讯犀牛鸟基金共涵盖机器学习、计算机视觉及模式识别、语音技术、自然语言处理、大数据技术、区块链等6个重点技术领域,涉及31项研究命题。 上一期,我们介绍了机器学习、计算机视觉与模式识别两个申报主题,这期我们将介绍语音技术专题和自然语言处理技术专题。欢迎青年学者关注了解,希望大家可以从中找到适合自己的申报命题。 三、语音技
Skype前几天推出了实时语音翻译的预览版,让用户可以跨越语言的障碍畅快交流。今天我们就来聊聊微软是如何做到这一点的。 Skype 的翻译系统主要分三步:首先,把你的实时语音转换成文字;然后,再把文字翻译成另一种语言的文字;最后,把文字转换成语音。其中,识别实时语音并转换成文字一直是最棘手的部分。 图像处理和语音识别是深度学习发展的两个主要方向。近几年来,由于深度学习的进步,语音识别依靠深度神经网络(deep neural networks)也取得了不少进展。神经网络在八十年代就已出现,但真正开始焕发光芒
深度学习在语音识别领域取得的成绩是突破性的。2009年深度学习的概念被引入语音识别领域,并对该领域产生了巨大的影响。在短短几年时间内,深度学习的方法在TIMIT数据集上将基于传统的混合高斯模型(gaussian mixture model,GMM)的错误率从21.7%降低到了使用深度学习模型的17.9%。如此大的提高幅度很快引起了学术界和工业界的广泛关注。从2010年到2014年间,在语音识别领域的两大学术会议IEEE-ICASSP和Interspeech上,深度学习的文章呈现出逐年递增的趋势。在工业界,包括谷歌、苹果、微软、IBM、百度等在内的国内外大型IT公司提供的语音相关产品,比如谷歌的Google Now、苹果的Siri、微软的Xbox和Skype等,都是基于深度学习算法。
CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在通过搭建产学合作平台,连接产业实践问题与学术科研问题,支持海内外优秀青年学者开展与产业结合的前沿科研工作。 2018年CCF-腾讯犀牛鸟基金共涵盖机器学习、计算机视觉及模式识别、语音技术、自然语言处理、大数据技术、区块链等6个重点技术领域,涉及31项研究命题。 上一期,我们介绍了机器学习、计算机视觉与模式识别两个申报主题,这期我们将介绍语音技术专题和自然语言处理技术专题。欢迎青年学者关注了解,希望大家可以从中找到适合自己的申报命题。 三、语音技术专
最近,QQ V7.6.0版本发布,新增视频通话“口吐弹幕”功能,引发网友热议。 寻找最新黑科技与视频通话的契合点,使视频聊天更潮、更互动、更具趣味性是,一直是QQ视频通话探索的方向。这次我们结合实时语
常会遇到有些 PDF 是扫描版的无法复制(豆丁网上的),有些网页(极客时间)也限制了复制功能。这时候要复制,通常情况下只能手动去打,很浪费时间对吧。当然也可以使用一些 OCR 识别软件,但要么付费要体积很大,不方便。
---- 【新智元导读】首次正式亮相国际级会议的AI同传,腾讯翻译君不仅仅代表了自己,还代表了整个AI智能翻译业界。近几天AI同传遭遇社会嘲笑,对此,腾讯翻译君负责人李学朝,讯飞胡郁有话说。 这几天又有一个AI火了。 没错,我们说的是在2018年博鳌论坛担任同声传译的腾讯同传。 这个事件让人想起了2017年“3·15晚会”打假人脸识别,让人脸识别技术一夜走红,也让众多人脸识别公司躺枪。一年后的今天,公众对人脸识别的接受度已经明显提升,技术在不断发展,人脸识别的商业化应用在不断产生。 当时,人脸识别公司云
语音识别是现在很多人都想了解的概念,其实语音识别就是将语音转换成文字。目前的需求还是蛮大的,尤其是会议纪要、演讲采访、音频文件整理成文字等场景,使用需求非常大。
自动语音翻译是指让机器完成从源语言的语音信号自动翻译生成目标语言的文本的过程,其基本设想是让计算机像人类译员一样充当持不同语言说话人之间翻译的角色。
Vincent Vanhoucke是Google的首席科学家,斯坦福大学电子工程学博士,目前在Google Brain主导机器人相关的项目。Vanhoucke主要的研究领域是语音识别、计算机视觉和机器人等领域,他还即将主持机器人领域的盛会CoRL 2017(Conference on Robot Learning)。 Vanhoucke认为,机器智能现在已经发展到一个相当的水准,在某些特定情境下的表现可以媲美(甚至超越)人类,比如机器视觉、机器翻译、语音识别,现在是时候让这些能力在物理世界中发挥效应了。他在
语言交流是人类互动一种自然的方式,随着语音技术的发展,我们可以与设备以及未来的虚拟世界进行互动,由此虚拟体验将于我们的现实世界融为一体。
近年来AI技术发展速度迅猛,深入到生活中的方方面面,从手机APP到车载语音系统。今天小PP和大家一起仔细了解,AI技术中的语音技术在各场景的应用,并奉上对应模型~
多语言识别翻译的研究一直都是学术界研究的重点。目前全球有几千种语言,在全球化背景下不同语言人群之间的交流越来越密切,然而学习一门外语的成本是非常大的。前两年的研究主要集中在一对一、一对多的研究,然而当面对这么多的语言时,既需要「考虑模型准确率,还需要考虑语种的识别」。最近,随着人工智能大型自然语言模型的发展,利用统一模型实现多语种识别翻译来实现不同语种之间交流逐渐的变成了可能。
2016 年,《财富》杂志在文章《Why deep learning is suddenly changing your life》曾如此描述这波 AI 浪潮的兴起,「最初的革命火花开始于 2009 年。那年夏天微软的邓力邀请神经网络先驱、多伦多大学的 Geoffrey Hinton 来参观并合作... 邓力的团队用神经网络做了大量语言识别方面的实验。」
重构出版:语音交互技术的冲击与机遇 1 摘要:语音交互技术是人工智能技术的重要分支,包括语音识别、语音合成和语义理解三个部分。语音交互技术不仅从出版实务上重构了出版业,而且重构了出版业的核心概念。出版机构面对语音交互技术的冲击要主动培养音频编辑人才,提前布局市场,在下一次知识服务转型的风口占得先机。 关键词:人工智能;语音交互技术;重构;出版业 2 人工智能将对人类社会产生重大影响,而语音是人工智能技术重要应用领域之一。近年来语音交互技术日趋成熟,数字出版领域有声读物快速发展,市场不断扩大。“国内已经先
12月15日,由腾讯云主办的首届“腾讯云+社区开发者大会”在北京举行。本届大会以“新趋势•新技术•新应用”为主题,汇聚了超40位技术专家,共同探索人工智能、大数据、物联网、小程序、运维开发等热门技术的最新发展成果,吸引超过1000名开发者的参与。以下是小程序分会场的演讲内容,稍作整理,分享给大家。
模型下载地址:https://huggingface.co/ggerganov/whisper.cpp large-v1模型比较大,但是会更准确一些。我这边就用large系列模型好了,虽然显卡不咋地,但是跑这个还是够用了,根据限制自行选择模型,占用内存越大越准确。
已经在语音和语言技术领域耕耘了30年,取得多个突破性进展的微软全球技术院士 (Technical Fellow)、首席语音科学家黄学东先生如此说道。
作者:刘光明 【新智元导读】近期,来自麻省理工学院计算机科学人工智能实验室(CSAIL)和卡塔尔计算研究所的研究人员已经通过新的解释技术,来分析神经网络做机器翻译和语音识别的训练过程。 神经网络通过分析大量的训练数据来学习并执行任务,这是近期人工智能领域最令人印象深刻的进展,包括语音识别和自动翻译系统。 然而,在训练过程中,神经网络以甚至其创造者都无法解释的方式来不断调整其内部设置。计算机科学最近的许多工作都聚焦于千方百计的弄清楚神经网络的工作原理。 在最近的几篇论文,来自麻省理工学院计算机科学人工智能实
摘要: 本文讲的是用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等,自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方
深度学习算法中的门控循环单元(Gated Recurrent Units):原理、应用与未来展望
【新智元导读】微软人工智能首席科学家邓力18日在自动化学会与新智元携手举办的首届 AI WORLD 2016世界人工智能大会 发表主旨演讲《深度学习十年简史和人工智能未来展望》。邓力博士回顾了他与 Hinton 的合作及其产业影响,重点讲述语音识别如何随深度学习发展进入商用阶段,还介绍了微软近两年的人工智能进展,并对深度学习技术、应用和产业进行展望。演讲最后,邓力分享了他最新的思想和工作——将符号式逻辑推理和数值张量式神经网络结合到一起,有望解决深度学习黑箱问题,常识嵌入与充实问题,以及逻辑推理规则的自动
【新智元导读】微软人工智能首席科学家邓力18日在首届世界人工智能大会 AI WORLD 2016 发表主旨演讲《深度学习十年简史和人工智能未来展望》。邓力博士回顾了他与 Hinton 的合作及其产业影响,重点讲述语音识别如何随深度学习发展进入商用阶段,还介绍了微软近两年的人工智能进展,并对深度学习技术、应用和产业进行展望。演讲最后,邓力分享了他最新的思想和工作——将符号式逻辑推理和数值张量式神经网络结合到一起,有望解决深度学习黑箱问题、常识嵌入与充实问题,以及逻辑推理规则的自动学习问题。 邓力:感谢大家!
笔者在前文《Azure AI 服务之文本翻译》中简单介绍了 Azure 认知服务中的文本翻译 API,通过这些简单的 REST API 调用就可以轻松地进行机器翻译。如果能在程序中简单的集成语音转文本
语音识别技术,也被称为自动语音识别Automatic Speech Recognition (ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
深度学习是一种人工智能技术,它用于解决各种问题,包括自然语言处理、计算机视觉等。递归神经网络(Recurrent Neural Network,RNN)是深度学习中的一种神经网络模型,主要用于处理序列数据,例如文本、语音、时间序列等。本文将详细介绍递归神经网络的原理、结构和应用。
深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得了显著的进展,尤其在自然语言处理、计算机视觉、语音识别和机器翻译等领域取得了突破性的进展。随着算法和模型的改进、计算能力的提升以及数据量的增长,深度学习的应用范围不断扩大,对各行各业产生了深远的影响。
Google日前正式发布旗下云端语音识别API,支持80多种语言,也能辨识正体中文。而新版API加强了长版音频档的转录精准度,也新增支持WAV、Opus和Speex文件格式,且Google也宣称,新版
对应的便是“耳”、“脑”、“口”的工作,机器要听懂人类说话,就离不开语音识别技术(ASR)。
AI 科技评论按:上一次你和你的电脑进行有意义的对话,并感受到它能真正地理解你,是什么时候?如果微软技术研究员、微软的语言语音小组组长黄学东博士做到了的话,那么你也将可以做到。并且,如果他以往的研究真的达到了他所说的水平的话,这一天的到来可能要比你想的还要快。
ChatGPT是一款基于人工智能的语言模型,它可以自动地生成文本,回答问题,完成翻译等任务。ChatGPT是由OpenAI公司开发的,使用了神经网络和深度学习技术。它可以帮助用户自动生成文本,以及模拟人类语言表达的思维模式。
为了抗击新冠肺炎病毒疫情,腾讯云AI即日起免费为战疫开发者提供人脸识别、文字识别、语音识别、语音合成、机器翻译、腾讯智能对话平台TBP等服务,直至疫情结束。所有为政府部门、医疗机构等开发疫情服务,以及提供远程办公、教学等服务的开发者和服务商,都可以免费或以一定优惠额度享受服务。
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,算法是实现任务的核心,因此深度学习必备算法的学习和理解是非常重要的。
这是国际级会议第一次正式使用AI作为翻译。2018年博鳌亚洲论坛,真准备这么干。据称经过数月PK和方案选配,博鳌论坛最终选定了技术合作方。
---- 新智元报道 编辑:Emil、小匀 【新智元导读】数据稀缺以及开发成本高,多语种识别和翻译被认为是机器翻译技术难以跨越的难题。但随着国际交流日益频繁,跨地域、跨文化间的无障碍沟通成为不断增长的刚性需求。近期科大讯飞表示,通过系统性创新,他们将在10年内让机器在70+语言之间实现互通。 下一个十年,人工智能会从「黑盒」变「白盒」吗? 下一个十年,人机共存时代会真正到来吗? 下一个十年,哪个学科又会与人工智能深入交叉,引发颠覆式的革新呢? 人工智能核心技术的逐渐成熟推动智能产品的落地,以语
想一下未来50年或者100年,您的孙子或者孙子的孙子,是否还会花费人生中十几年甚至几十年的时间学习一门外语,甚至还学不好?
一个月之前,微软发布了基于深度神经网络的文本到语音(text-to-speech,TTS)系统,并且做为 Azure 认知服务中的一项,提供面向客户的预览版本。
领取专属 10元无门槛券
手把手带您无忧上云