首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于Keras的多标签图像分类

multi-label多标记监督学习 其实我个人比较喜欢把label翻译为标签。那可能学术上翻译multi-label多翻译为多标记。其实和多标签一个意思。...其实关于多标签学习的研究,已经有很多成果了。 主要解法是 * 不扩展基础分类器的本来算法,只通过转换原始问题来解决多标签问题。如BR, LP等。 * 扩展基础分类器的本来算法来适配多标签问题。...--labelbin : 保存的多标签二进制对象路径 --plot : 保存绘制的训练准确率和损失图 然后,设置一些重要的参数,包括训练的总次数 EPOCHS 、初始学习率 INIT_LR、批大小 BS...,原因主要是多标签分类的目标是将每个输出的标签作为一个独立的伯努利分布,并且希望单独惩罚每一个输出节点。...最后就是保存模型,绘制曲线图的代码了: 在训练结束后,训练集和测试集上的准确率分别是 98.57% 和 98.42 ,绘制的训练损失和准确率折线图图如下所示,上方是训练集和测试集的准确率变化曲线,下方则是训练集和测试集的损失图

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ·关于在Keras中多标签分类器训练准确率问题

    [知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...一、问题描述 关于在CNN中文本预测sigmoid分类器训练准确率的问题? 对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ]。...在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?...二、问题回复 问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。 什么意思呢?...设置合适的权重值,val_acc上升了,val多标签acc也达到了更高。 关于如何设置合适权重,笔者还在实验中,可以关注下笔者的知乎和博客。后面实验结果会及时更新。

    2.1K20

    二分类相关评估指标(召回率、准确率,精确率,f1,auc和roc)

    Recall = TP /(TP + FN) 召回率,表示模型准确预测为正样本的数量占所有正样本数量的比例。...F1 = 2*P*R /(P+ R) F1,是一个综合指标,是Precision和Recall的调和平均数,因为在一般情况下,Precision和Recall是两个互补关系的指标,鱼和熊掌不可兼得,顾通过...F1越大,分类器效果越好。 4.Accuracy和Precision区别 Accaracy和Precision作用相差不大,都是值越大,分类器效果越好,但是有前提,前提就是样本是均衡的。...首先看两个定义: TPR = TP / (TP+FN)真正率,指在所有正样本中,被准确识别为正样本的比例,公式与召回率一样。...通常的二分类模型中取0.5,在绘制ROC曲线过程中,通常取测试集上各样本的概率预测分值,即predict_prob,将所有样本的概率预测分值从高到低排序,并将这些分值依次作为threshold,然后计算对应的点

    1.5K60

    知识图谱项目实战(一):瑞金医院MMC人工智能辅助构建知识图谱--初赛实体识别【1】

    看一下可视化效果:标注出来的实体还可以 3.5 准确率、精确率、召回率和F-score讲解 参考文章: 『NLP学习笔记』Sklearn计算准确率、精确率、召回率及F1 Score_布衣小张的博客-CSDN...Sklearn函数接口的描述是这样的: 准确度分类得分 在多标签分类中,此函数计算子集精度:为样本预测的标签集必须完全匹配y_true(实际标签)中相应的标签集。...‘weighted’: 为每个标签计算指标,并通过各类占比找到它们的加权均值(每个标签的正例数).它解决了’macro’的标签不平衡问题;它可以产生不在精确率和召回率之间的F-score....F1 score可以解释为精确率和召回率的加权平均值. F1 score的最好值为1,最差值为0. 精确率和召回率对F1 score的相对贡献是相等的....一般来说,精确度和召回率之间是矛盾的,这里引入F1-Score作为综合指标,就是为了平衡准确率和召回率的影响,较为全面地评价一个分类器。F1是精确率和召回率的调和平均。

    1.8K20

    R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F1,mAP、ROC曲线)

    :二分类与多分类评估(混淆矩阵,准确率,召回率,F1,mAP) 1、TPR与TNR 同时可以相应算出TPR(真正率或称为灵敏度)和TNR(真负率或称为特异度)。...4、召回率与准确率的延伸——F1值 准确率和召回率是互相影响的,理想情况下肯定是做到两者都高,但是一般情况下准确率高、召回率就低,召回率低、准确率高,当然如果两者都低,那是什么地方出问题了。...一般情况,用不同的阀值,统计出一组不同阀值下的精确率和召回率,如下图: ? 如果是做搜索,那就是保证召回的情况下提升准确率;如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回。...5、召回率、准确率、F1的延伸——AP和mAP(mean Average Precision) mAP是为解决P,R,F-measure的单点值局限性的。...网上的解决方案有: 在这种情况下预测(预测,标签,标签。 点= NULL)函数类的“预测”和“标签”变量应该列表或矩阵。 本文有两个ROC曲线绘制包,可参考。

    5.6K30

    精确度 召回率 f1_score多大了

    print(accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))) # 0.5 函数接口的描述是这样的: 准确度分类得分 在多标签分类中...‘weighted’: 为每个标签计算指标,并通过各类占比找到它们的加权均值(每个标签的正例数).它解决了’macro’的标签不平衡问题;它可以产生不在精确率和召回率之间的F-score....‘samples’: 为每个实例计算指标,找到它们的均值(只在多标签分类的时候有意义,并且和函数accuracy_score不同)....F1 score F1 score是精确率和召回率的调和平均值,计算公式为: F 1 = 2 ∗ p r e c i s i o n ∗ r e c a l l p r e c i s i o n...F1 score可以解释为精确率和召回率的加权平均值. F1 score的最好值为1,最差值为0. 精确率和召回率对F1 score的相对贡献是相等的.

    97320

    用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

    p=8640 介绍 在本文中,我们将看到如何开发具有多个输出的文本分类模型。我们将开发一个文本分类模型,该模型可分析文本注释并预测与该注释关联的多个标签。多标签分类问题实际上是多个输出模型的子集。...输出: 您可以看到,“有毒”评论的出现频率最高,其次分别是 “侮辱”。 创建多标签文本分类模型 创建多标签分类模型的方法有两种:使用单个密集输出层和多个密集输出层。...具有单输出层的多标签文本分类模型 在本节中,我们将创建具有单个输出层的多标签文本分类模型。  在下一步中,我们将创建输入和输出集。输入是来自该comment_text列的注释。 ...具有多个输出层的多标签文本分类模型 在本节中,我们将创建一个多标签文本分类模型,其中每个输出标签将具有一个 输出密集层。...结论 多标签文本分类是最常见的文本分类问题之一。在本文中,我们研究了两种用于多标签文本分类的深度学习方法。在第一种方法中,我们使用具有多个神经元的单个密集输出层,其中每个神经元代表一个标签。

    3.5K11

    机器学习模型的度量选择(下)

    +TP) 「混淆矩阵」 「F1度量」:精确性和召回率的调和平均值。...ROC-AUC评分处理少数负标签的情况与处理少数正标签的情况相同。这里需要注意的一件有趣的事情是,F1的分数在模型3和模型4中几乎是一样的,因为正标签的数量很大,它只关心正标签的错误分类。...让我们看看F1得分和ROC-AUC得分是否都能捕捉到这种差异 模型(1)的F1得分=2*(1)*(0.1)/1.1 = 0.095 模型(2)的F1得分= 2*(1)*(0.9)/1.9 = 0.947...示例:将一组水果图像分为以下任一类别:苹果、香蕉和桔子。 「多标签」:将样本分类为一组目标标签。示例:将博客标记为一个或多个主题,如技术、宗教、政治等。标签是独立的,它们之间的关系并不重要。...在宏平均法中,取不同集合上系统的精度和召回率的平均值 「如果存在类别不平衡问题,则采用微平均法。」

    79920

    介绍平衡准确率(Balanced Accuracy)和加权 F1 值(Weighted F1)

    先复习一下查准率、召回率和 F1 分数: 查准率是对预测结果而言,每个类别模型预测正确的比例。 召回率是对样本标签而言,每个类别中有多少被预测正确了。...F1 分数是查准率和召回率的调和平均值。 定义二分类结果的混淆矩阵,纵轴从上往下为预测结果的 1 和 0,横轴从左往右为真实标签的 1 和 0。左上到右下的对角线:TP、TN。...然后,我们来看看加权 F1 值。F1 值是精确率(Precision)和召回率(Recall)的调和平均数,它同时考虑了模型的精确率和召回率。...平衡准确率(Balanced Accuracy) 平衡准确率用于处理二元分类问题中的标签不平衡数据集。它被定义为每个类别上获得的召回率的平均值。...加权 F1 值(Weighted F1) F1 分数是评估模型在二分类任务中预测性能的常用指标,综合考虑了查准率和召回率。

    1.2K00

    【机器学习】F1分数(F1 Score)详解及tensorflow、numpy实现

    F1-Score相关概念 F1分数(F1 Score),是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。...F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好。...F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。...更一般的,我们定义Fβ分数为: 除了F1分数之外,F0.5分数和F2分数,在统计学中也得到了大量应用,其中,F2分数中,召回率的权重高于精确率,而F0.5分数中,精确率的权重高于召回率。...Macro-F1和Micro-F1 Macro-F1和Micro-F1是相对于多标签分类而言的。 Micro-F1,计算出所有类别总的Precision和Recall,然后计算F1。

    13.3K11

    机器学习算法常用指标总结

    下面是一个混淆矩阵的示例: - 预测为正例 预测为负例 实际为正例 TP FN 实际为负例 FP TN 这些数据可以用于计算许多其他评价指标,例如精度、召回率和F1分数。 3....F1 分数 (F1 Score) F1 分数是精度 和召回率的调和平均值,它试图在这两个指标之间找到平衡。...F1 分数的计算公式是: F1 分数 = 2 * (精度 * 召回率) / (精度 + 召回率) 在处理不平衡数据集时,F1分数通常比准确度更有用,因为它考虑了假阴性和假阳性的影响。 10....Hamming Loss Hamming Loss是多标签分类问题中的一个指标。它是错误预测的标签数量与总标签数的比例。Hamming Loss的值越小,模型的性能越好。...Cohen's Kappa Cohen's Kappa 是一种衡量分类器性能的指标,特别是在处理多标签分类问题时。它解决了由于随机预测产生的正确分类的问题。

    13310

    TensorFlow 2.0中的多标签图像分类

    使用TF.Hub迁移学习 模型训练与评估 导出Keras模型 了解多标签分类 近年来,机器学习在解决之前无法想象的规模的复杂预测任务方面显示出巨大的成功。...应用示例是医学诊断,其中需要根据患者的体征和症状开出一种或多种治疗方法。通过类推,可以设计用于汽车诊断的多标签分类器。...它以所有电子测量,错误,症状,行驶里程为输入,并预测万一发生汽车事故时需要更换的零件。 多标签分类在计算机视觉应用中也很常见。...使用宏soft F1损失训练模型 指定学习率和训练时期数(整个数据集的循环数)。...可以冻结预训练的模型,并且在训练过程中仅更新分类图层的权重。 直接为宏F1优化:通过引入宏软F1损失,可以训练模型以直接增加关心的指标:宏F1得分@阈值0.5。

    6.8K71

    【技术白皮书】第三章 - 2 :关系抽取的方法

    通过在数据集TAC和SemVal-2010Task8上的评估,其最佳的实验结果的准确率、召回率、F1值为71.3%,65.4%,68.2%,该方法的性能优于序列标注和依赖神经网络。...,边表示关系,有效地解决了关系重叠和实体重叠问题,不仅如此,还对边(关系)加入了权重,有效挖掘了实体对间的潜在特征,通过使用NYT 和WebNLG 数据集的评估,该方法在最佳情况下准确率、召回率及F1...该方法可以有效地减少了错误标签的传播和积累,在最佳情况下,准确率、召回率以及F1值达到了48.30%,29.52%,36.64%。...该方法适用于高维空间的信息提取,与SVM 算法相比,准确率提高了12.1%,召回率提高了1.21%,F1值提高了5.9%,准确率和F1值得到显著提高。...由于测试数据中表示的关系实例的数量未知,因此我们无法计算这种情况下的召回率。相反,我们计算前N个提取的关系实例的精度。表2显示了前100、前200和前500个提取实例的手动评估精度。

    2.1K30

    实战|手把手教你训练一个基于Keras的多标签图像分类器

    / 作者:Adrian Rosebrock 今天介绍的是基于 Keras 实现多标签图像分类,主要分为四个部分: 介绍采用的多标签数据集 简单介绍使用的网络模型 SmallerVGGNet,一个简化版的...多标签分类项目结构 整个多标签分类的项目结构如下所示: ├── classify.py ├── dataset │ ├── black_jeans [344 entries │ ├── blue_dress...,但是多标签图像分类需要采用 sigmoid 。...--labelbin : 保存的多标签二进制对象路径 --plot : 保存绘制的训练准确率和损失图 然后,设置一些重要的参数,包括训练的总次数 EPOCHS 、初始学习率INIT_LR、批大小 BS...---- 如果想了解更多关于多标签图像分类的理论知识,可以查看下面这篇综述: 【技术综述】多标签图像分类综述

    1.9K20

    基于OpenCV的棋盘图像识别

    本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。...最后,我通过将裁剪后的图像分成带标签的文件夹来对它们进行分类。 02....使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。...结果 为了更好地可视化验证准确性,我创建了模型预测的混淆矩阵。通过此图表,可以轻松评估模型的优缺点。优点:空-准确率为99%,召回率为100%;白棋和黑棋(WP和BP)-F1得分约为95%。...劣势:白骑士(WN)-召回率高(98%),但准确性却很低(65%);白主教(WB)-召回率最低,为74%。 测试数据的混淆矩阵 05. 应用 该应用程序的目标是使用CNN模型并可视化每个步骤的性能。

    7.4K20

    超强,必会的机器学习评估指标

    概括:提供真阳性、假阳性、真阴性和假阴性的详细分类。深入了解每个类别的模型性能,有助于识别弱点和偏差。作为计算各种指标的基础,例如精确度、召回率、F1 分数和准确度。...F1 分数的公式如下:当误报和漏报同样重要并且您寻求精确率和召回率之间的平衡时,F1 分数非常有用。 概括:F1-Score 平衡精确度和召回率:当误报和漏报都很重要时很有用。...考虑以下因素:机器学习任务类型:选择指标时需要考虑您是在处理分类、回归还是多标签问题,因为不同的问题类型适合不同的评估方法。...这样不仅可以揭示模型的长处和短板,还能为模型的优化提供方向。例如:分类任务:同时考虑精确度、召回率和F1分数,可以帮助您在误报和漏报之间找到一个平衡点。...具体到每个指标,我们讨论了:分类指标:介绍了分类任务中的基本概念,如真正例、假正例、真反例、假反例,以及衡量这些分类结果的准确度、混淆矩阵、精确度、召回率、F1分数和AUC。

    17400

    基于计算机视觉的棋盘图像识别

    本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置 ? 我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。...最后,我通过将裁剪后的图像分成带标签的文件夹来对它们进行分类。 02....使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。...结果 为了更好地可视化验证准确性,我创建了模型预测的混淆矩阵。通过此图表,可以轻松评估模型的优缺点。优点:空-准确率为99%,召回率为100%;白棋和黑棋(WP和BP)-F1得分约为95%。...劣势:白骑士(WN)-召回率高(98%),但准确性却很低(65%);白主教(WB)-召回率最低,为74%。 ? 测试数据的混淆矩阵 05.

    1.2K10

    一文看懂机器学习指标(二)

    大家好,我是小轩 上一篇文章末尾说过几天写一篇多标签分类评价指标 后台已经有人催更了 现在它来了 这几天跑的模型是以论文摘要,说的再详细一些就是对摘要进行标记,然后用标记后的数据在模型中训练 下面我们多标签分类进行介绍...,可能有的说的不是特别精确,但可以参考理解其意思,仅供大家选择和学习 有的同学问单标签和多标签有什么区别?...上面是两个维度的混淆矩阵,另外两个也一样,求混淆矩阵的方法都是一样的,这里就不展示了 多标签分类指标将F1分为F1 Micro和F1 Macro F1 Macro考虑了标签之间的差异 F1 Micro...上面可以通过四个混淆矩阵计算四个维度的精确率和召回率,就可以得到四组精确率和四组召回率 针对每一个维度 ,比如说第一个维度计算出来的精确率和召回率,可以得到F1 Macro值,同样计算其它三个维度的F1...Macro值,然后计算四个F1 Macro的平均数 将四个维度的混淆矩阵的TP、FP、FN、TN对应相加,得到一个混淆矩阵,然后计算精确率和召回率,最后计算得到F1 Micro值 有什么问题可以后台留言

    25820

    多类别问题的绩效衡量:F1-score 和广义AUC

    p=11160 对于分类问题,通常根据与分类器关联的混淆矩阵来定义分类器性能。根据混淆矩阵 ,可以计算灵敏度(召回率),特异性和精度。 对于二进制分类问题,所有这些性能指标都很容易获得。...非得分分类器的数据 为了展示多类别设置中非得分分类器的性能指标,让我们考虑观察到N = 100的分类问题和观察到G = {1,...,5}的五个分类问题: ref.labels 计算R中的微观和宏观平均值 在这里,我演示了如何在R中计算F1分数的微观平均值和宏观平均值。...但是,我们的假设分类器对于单个类别(如B类(精度)和E类(精度和召回率))的表现不佳。现在,我们将研究F1得分的微观平均值和宏观平均值如何受到模型预测的影响。...在多类别设置中,我们可以根据它们对所有精度召回曲线的关系可视化多类别模型的性能。AUC也可以推广到多类别设置。 一对一的精确召回曲线 我们可以通过绘制K 二进制分类器的性能来可视化多类模型的性能。

    1.1K30
    领券