首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 算法交易秘籍(一)

在步骤 2中,您创建一个持有5 天时间差值的timedelta对象,并将其赋值给td1。您调用构造函数来创建具有单个属性days的对象。您在此处传递值为5。...在步骤 5中,通过向构造函数传递columns参数以特定顺序的列来创建一个DataFrame,该参数是一个字符串列表。...可以通过向DataFrame构造函数传递一个index参数以迭代器的形式设置自定义索引。...你将 dataframe.csv,一个生成 .csv 文件的文件路径,作为第一个参数传递,将索引设置为 False 作为第二个参数。将索引设置为 False 可以防止索引被转储到 .csv 文件中。...place_order()方法接受的参数描述如下: instrument:必须放置订单的金融工具。应该是Instrument类的实例。您在这里传递instrument。

79450

PySpark UD(A)F 的高效使用

所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...Pandas DataFrame的转换 类似地,定义了与上面相同的函数,但针对的是Pandas数据帧。...带有这种装饰器的函数接受cols_in和cols_out参数,这些参数指定哪些列需要转换为JSON,哪些列需要转换为JSON。只有在传递了这些信息之后,才能得到定义的实际UDF。...,假设只想将值为 42 的键 x 添加到 maps 列中的字典中。...结语 本文展示了一个实用的解决方法来处理 Spark 2.3/4 的 UDF 和复杂数据类型。与每个解决方法一样,它远非完美。话虽如此,所提出的解决方法已经在生产环境中顺利运行了一段时间。

19.7K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 全栈 191 问(附答案)

    说说你知道的创建字典的几种方法? 字典视图是什么? 所有对象都能作为字典的键吗? 集合内的元素可以为任意类型吗? 什么是可哈希类型?举几个例子 求集合的并集、差集、交集、子集的方法?...对象的类型是? 如何格式化时间字符串?'2020-02-22 11:19:19' 对应的时间格式串是 '%Y-%M-%d %H:%m:%S' ,正确吗? 列举 datetime 模块中的四个类?...如何区分参数是位置参数还是关键字参数? f(*a,**b) 可变位置参数,可变关键字参数怎么传参? 参数传递常见的以下 3 个异常,怎么理解?...Python 中如何创建线程,以及多线程中的资源竞争及暴露出的问题 多线程鸡肋和高效的协程机制的相关案例 列表和迭代器有何区别? 如何拼接多个迭代器,形成一个更大的可迭代对象?...魔术方法 __getitem__帮助实现 Python 的 API 文档中,经常看到 array-like 之类的词汇,这背后是 Python 的鸭子类型,该如何理解?

    4.2K20

    Pandas入门教程

    其实这个pandas教程,卷的很严重了,才哥,小P等人写了很多的文章,这篇文章是粉丝【古月星辰】投稿,自己学习过程中整理的一些基础资料,整理成文,这里发出来给大家一起学习。...Pandas入门 本文主要详细介绍了pandas的各种基础操作,源文件为zlJob.csv,可以私我进行获取,下图是原始数据部分一览。...() 1.2 数据的创建 pandas可以创建两种数据类型,series和DataFrame; 创建Series(类似于列表,是一个一维序列) 创建dataframe(类似于excel表格,是二维数据...如果传递了 dict,排序后的键将用作keys参数,除非传递,在这种情况下将选择值(见下文)。任何 None 对象都将被静默删除,除非它们都是 None 在这种情况下将引发 ValueError 。...如果为 True,则不要使用串联轴上的索引值。结果轴将被标记为 0, …, n - 1。如果您在连接轴没有有意义的索引信息的情况下连接对象,这将非常有用。请注意,其他轴上的索引值在连接中仍然有效。

    1.1K30

    如何快速学会Python处理数据?(5000字走心总结)

    常用的Python数据处理模块有Pandas和Numpy这两个,这是必须要掌握的,另外,Matplotlib模块是数据可视化模块,也是必须会的。...将表格型数据读取为DataFrame对象是pandas的重要特性 read_csv(csv文件输入函数) read_table(文本文件输入函数) to_csv(数据输出函数) #遍历所有文件路径,读取所有文件下...03 声明变量 变量是Python语言中一个非常重要的概念,其作用就是为Python程序中的某个值起一个名字。类似于"张三"、"李四"一样的名字。...for循环就是个迭代器,当我们在使用for循环时,即重复运行一个代码块,或者不断迭代容器对象中的元素,比如一些序列对象,列表,字典,元组,甚至文件等,而for循环的本质取出可迭代对象中的迭代器然后对迭代器不断的操作...a="" #调用自定义函数 name= readname(a) #参数传递,传一个空字符串 07Lambda表达式 Lambda是一个表达式,定义了一个匿名函数,代码x为入口参数,x[0:7]为函数体

    2K20

    图解pandas模块21个常用操作

    1、Series序列 系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。 ?...2、从ndarray创建一个系列 如果数据是ndarray,则传递的索引必须具有相同的长度。...如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ? 4、序列数据的访问 通过各种方式访问Series数据,系列中的数据可以使用类似于访问numpy中的ndarray中的数据来访问。 ?...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...你可以把它想象成一个电子表格或SQL表,或者 Series 对象的字典。它一般是最常用的pandas对象。 ? ?

    9K22

    Pandas数据结构之DataFrame

    DataFrame 用 Series 创建 DataFrame 备选构建器 DataFrame 是由多种类型的列构成的二维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典...DataFrame 是最常用的 Pandas 对象,与 Series 一样,DataFrame 支持多种类型的输入数据: 一维 ndarray、列表、字典、Series 字典 二维 numpy.ndarray...Python > = 3.6,且 Pandas > = 0.23,数据是字典,且未指定 columns 参数时,DataFrame 的列按字典的插入顺序排序。...如果传递了索引参数,index 的长度必须与数组一致。如果没有传递索引参数,生成的结果是 range(n),n 为数组长度。...DataFrame 里的缺失值用 np.nan 表示。DataFrame 构建器以 numpy.MaskedArray 为参数时 ,被屏蔽的条目为缺失数据。

    1.6K10

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    这个方法用途很广,接受一系列输入参数。但有一个参数是必需的,一个文件名或缓冲区,也就是一个打开的文件对象。...to_csv(…)方法将DataFrame的内容转换为可存储于文本文件的格式。你要指定分隔符,比如sep=‘,’,以及是否保存DataFrame的索引,默认是保存的。...例如,range(0, 3)生成的序列是0,1,2. 存储数据到Excel文件中也很简单。仅需调用.to_excel(...)方法,第一个参数传你要保存数据的文件名,第二个参数传工作表的名字。...使用DataFrame对象的.apply(...)方法遍历内部每一行。第一个参数指定了要应用到每行记录上的方法。axis参数的默认值为0。意味着指定的方法会应用到DataFrame的每一列上。...参数inplace=True直接在原来的DataFrame对象上移除数据,而非复制出一个DataFrame、清理后再返回;默认值是inplace=False: url_read.dropna (thresh

    8.4K20

    Python 数据分析(PYDA)第三版(三)

    术语解析有时也用于描述加载文本数据并将其解释为表格和不同数据类型。我将专注于使用 pandas 进行数据输入和输出,尽管其他库中有许多工具可帮助读取和写入各种格式的数据。...6.1 以文本格式读取和写入数据 pandas 提供了许多函数,用于将表格数据读取为 DataFrame 对象。表 6.1 总结了其中一些;pandas.read_csv是本书中最常用的之一。...在线 pandas 文档有许多关于每个参数如何工作的示例,因此如果您在阅读特定文件时感到困惑,可能会有足够相似的示例帮助您找到正确的参数。...基本类型是对象(字典)、数组(列表)、字符串、数字、布尔值和空值。对象中的所有键都必须是字符串。有几个 Python 库可用于读取和写入 JSON 数据。...pandas 有一个内置函数pandas.read_html,它使用所有这些库自动将 HTML 文件中的表格解析为 DataFrame 对象。

    33400

    python数据分析——Python数据分析模块

    ndarray与列表形式上相似,但是ndarray要求数组内部的元素必须是相同的类型。在生成ndarray时,采用Nompy的array方法。...关于random 直接给参数传一个整数,即size=3 np.random.random(3) 返回值:是一个一维数组,注意他不是列表 给参数传一个元组,即size=(3, 3) np.random.random...((3, 3)) 返回值:是一个二维数组 关于randint np.random.randint(10) 返回值:仅仅得到一个整数,且得到的整数总是小于10 对前两个参数赋值,注意第二个参数要大于第一个参数的值...Pandas是基于Numpy构建的数据分析库,但它比Numpy有更高级的数据结构和分析工具,如Series类型、DataFrame类型等。...第一列是数据的索引,第二列是数据 2.1Pandas数据结构之Series 当Series数组元素为数值时,可以使用Series对象的describe方法对Series数组的数值进行分析 2.2 Pandas

    26210

    Pandas 2.2 中文官方教程和指南(八)

    然而,pandas 和第三方库在一些地方扩展了 NumPy 的类型系统,此时 dtype 将是一个ExtensionDtype。pandas 内的一些示例是分类数据和可空整数数据类型。...## DataFrame DataFrame 是一个具有不同类型列的二维标记数据结构。你可以将它看作是一个电子表格或 SQL 表,或者是一组 Series 对象的字典。...如果传递了索引,它也必须与数组的长度相同。如果没有传递索引,结果将是 range(n),其中 n 是数组的长度。...pandas 中的一些示例包括 分类数据 和 可空整数数据类型。详情请参阅 dtypes。 如果你需要一个 Series 的实际数组支持,请使用 Series.array。...DataFrame DataFrame是一个带有可能不同类型列的二维标签数据结构。你可以将它视为电子表格或 SQL 表,或者是一系列 Series 对象的字典。它通常是最常用的 pandas 对象。

    31700

    解决KeyError: “Passing list-likes to .loc or [] with any missing labels is no long

    当我们使用列表(或其他可迭代对象)传递给.loc或[]索引器时,Pandas在查找标签时可能会遇到缺失的标签,这会导致KeyError。...解决方法方法一:使用.isin()方法过滤标签一种解决方法是使用Pandas的​​.isin()​​方法来过滤标签,以确保只选择存在于DataFrame中的标签。...下面是修改后的示例代码:pythonCopy codeimport pandas as pddf = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})labels...方法二:使用.reindex()方法重新索引另一种解决方法是使用Pandas的​​.reindex()​​方法来重新索引,以仅选择存在于DataFrame中的标签。...需要注意的是,在Pandas中,索引器​​.loc​​和​​[]​​可以实现更灵活的选择和筛选操作,还可以使用切片操作(如​​df.loc[:, 'column1':'column2']​​)来选择连续的行或列

    38510

    Pandas数据处理1、DataFrame删除NaN空值(dropna各种属性值控制超全)

    ,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...woman'], 'age': [22, np.nan, 16, np.nan, 27] } ) print(df) print("----subset----") # subset传的参数是列名的数组...woman'], 'age': [22, np.nan, 16, np.nan, 27] } ) print(df) print("----subset----") # subset传的参数是列名的数组...如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断) downcast:dict, default is None,字典中的项为,为类型向下转换规则。

    4.1K20

    一道基础题,多种解题思路,引出Pandas多个知识点

    [2, 3]), ('C', [4, 5, 6])]) 将这个内部是元组的可迭代对象传入DataFrame的构造函数中: pd.DataFrame(mydict.items()) 返回结果: ?...这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...result.append((k, v)) pd.DataFrame(result) 本质上就是实现了一个笛卡尔积的拉平操作,将mydict.items这个可迭代对象的元组构造笛卡尔积并按照整体拉平。...为可迭代对象 可选参数repeat 表示重复次数 用于生成可迭代对象输入的笛卡儿积,相当于生成器表达式中的嵌套循环。...---- 列表的extend方法是将可迭代对象的每个元素都添加到列表中,而append方法只能添加单个元素。

    1.2K20

    Python数据分析之pandas基本数据结构

    中两种常用的数据类型: (1)Series是一种一维的带标签数组对象。...3 DataFrame数组 3.1 DataFrame数组构成 DataFrame数组是Pandas中另一种数据结构,其数据的呈现方式类似于Excel这种二维表结构。...3.2 创建DataFrame数组 (1)通过字典创建 通过字典来创建DataFrame数组时,字典的键将会自动成DataFrame数组的列名,字典的值必须是可迭代对象,例如Series、numpy数组...DataFrame数组 >>> df one two a 1.0 1.0 b 2.0 2.0 c 3.0 3.0 d NaN 4.0 无论是上面那种类型对象为值的字典,都可以通过下面的方式重新指定列索引...4 总结 本文大致介绍了Pandas中的两种重要数据结构Series数组对象和DataFrame数组对象的特点、主要创建方法、属性。

    1.2K10

    cuDF,能取代 Pandas 吗?

    cuDF和Pandas比较 cuDF是一个DataFrame库,它与Pandas API密切匹配,但直接使用时并不是Pandas的完全替代品。...缺失值: 与Pandas不同,cuDF中的所有数据类型都是可为空的,意味着它们可以包含缺失值(用cudf.NA表示)。...迭代: 在cuDF中,不支持对Series、DataFrame或Index进行迭代。因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。...没有真正的“object”数据类型: 与Pandas和NumPy不同,cuDF不支持“object”数据类型,用于存储任意Python对象的集合。...Dask-cuDF允许您在分布式GPU环境中进行高性能的数据处理,特别是当数据集太大,无法容纳在单个GPU内存中时。

    45412

    Pandas全景透视:解锁数据科学的黄金钥匙

    DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...索引(Index): 索引是用于标识每个元素的标签,可以是整数、字符串、日期等类型的数据。索引提供了对 Series 中数据的标签化访问方式。...值(Values): 值是 Series 中存储的实际数据,可以是任何数据类型,如整数、浮点数、字符串等。...df.fillna("test")运行结果 A B0 1 a1 2 b2 test test3 4 d③.extend() 函数,将一个可迭代对象的所有元素添加到列表的末尾...则表示将x中的数值分成等宽的n份(即每一组内的最大值与最小值之差约相等);如果是标量序列,序列中的数值表示用来分档的分界值如果是间隔索引,“ bins”的间隔索引必须不重叠举个例子import pandas

    11710
    领券