原文链接:https://mp.weixin.qq.com/s/kCDYOInF8KjHstIMAWSljA
选自ACMCSUR 专知编译 参与:左熠昆、Quan 昨天向大家推荐了最新的相关综述论文最新综述文章推荐:自然语言生成、深度学习算法、多媒体大数据分析,今天为大家详细介绍下多媒体大数据分析综述这篇文章。 Samira Pouyanfar, Yimin Yang, Shu-Ching Chen,Mei-Ling Shyu, and S. S. Iyengar. 2018. Multimedia Big Data Analytics: A Survey. ACM Comput. Surv. 51, 1, Art
程序员作为曾经备受羡慕的高薪群体,如今也面临着“保饭碗”的巨大压力,许多想要入坑的新人也处于观望态势。
估计大家听大数据听得太多,耳朵都快起茧了吧?谁要IT界不如娱乐界那么精彩热闹,几年才憋出一个流行词,自然大家只要提到数据,都说“大”;提到服务,都说“云”。 言归正传,你弄明白大数据分析要分析什么数据了吗?(弄明白的高手可以直接飘过;没弄明白的,看下面的内容能不能涨姿势) 我们先来简单聊几句有关大数据分析工具的背景。无需置疑,现在大数据平台和大数据分析工具日益普及,作用是可以帮助企业收集和分析数据,好处是可以寻找有价值的商业信息和洞察,以改进产品与服务。大数据分析工具用于分析数据,可以开发预测模型(pre
在当今信息时代,大数据已成为了无处不在的存在。从社交媒体上的点赞和分享,到在线购物的记录,再到传感器生成的海量数据,我们的世界充斥着各种各样的数据。这些数据的数量之大,以至于我们开始用“数据大爆炸”来形容这一现象。但这些数据不仅仅是数字的堆积,它们是有价值的资源,因为通过适当的大数据分析,我们可以从中提取出有意义的信息,这不仅改变了商业,也改变了我们的生活方式、医疗保健、科学研究等方方面面。
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢? 工具抢了人
1.分类方法大比武 大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用
大数据是眼下非常时髦的热词,同时也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。近日,“改革进行时——关注大数据产业”走进了位于重庆大渡口区的重庆移动互联网产业园,记者也近距离接触了传说中和大数据打交道的数据分析师。 大数据催生数据分析师 薪酬比同等级职位高20% 随着大数据在国内的发展,大数据相关人才却出现了供不应求的状况,大数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。 大数据分析师是做什么的?阿里巴巴集团研究员薛贵荣就曾表示,“大数
现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得
<数据猿导读> 本周,大数据领域共发生11起投融资事件,涉及领域包括通信、数据分析、商业智能wifi,信息安全等多个领域。其中,通鼎互联拟近15亿元收购两家互联网大数据公司,成为本周最大规模交易。以下
大数据概念 "大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据的4V特点:Volume、Velocity、Variety、Veracity。 "大数据"首先是指数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构
Hadoop、YARN、全数据分析、数据建模等这些大数据名词纷至沓来时,不由你漠视大数据的趋势。但趋势归趋势,当你着手大数据应用时,从何着手就成为了一个非常现实的问题。 99%被忽视的数据 所谓大数据,让我们抛开其4V的特性,思考一些究竟有哪些数据应该进行分析,很多人将大数据理解为微博、微信等非结构化数据,实际上,很多行业/企业并不拥有这些数据,这些数据通常掌握在互联网厂商手里,对于很多行业/企业来说,基于互联网的应用很多还都是一个尝试性的阶段,对于互联网大数据分析还不是一个急迫的需求。 行业
“大数据”是目前很火的一个词,甚至有些业内人士把2013年称为“大数据元年”。计算机行业里的人所谈的“大数据”指的是“大数据技术”,电视业、通信业领域的人所谈的“大数据”指的是“大数据分析”。 有线电视网络越来越重视对大数据分析的应用,而目前还未听到业内也提及“小数据”一词。很少有人想到,其实“小数据”也非常有用。在国内外,目前,“小数据”受到了越来越多的关注。 一下这个例子可以很直观的展现何为“小数据”。 康奈尔大学的计算机科学教授Deborah Estrin说,父亲去年去世的前几个月,从心脏病科医师那里
大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。 那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识, 大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
目录: 大数据分析的五个基本方面 如何选择适合的数据分析工具 如何区分三个大数据热门职业 从菜鸟成为数据科学家的 9步养成方案 从入门到精通—快速学会大数据分析 一、大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格
随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易,你只需要: 1)一个使一切工序“自动化”的想法 2)一伙能够拿出一个个算法的“数据科学家” 3)数据!大量的数据! 如果你已经有了一个基本的想法,而至于那些“数据科学家”们,你通常可以在和你合伙的小伙伴们中找到他们(如果没有的话,去哈佛、耶鲁、伯克利或者纽约大学这样的高校碰碰运气吧)。 万事具备,只欠东风,那么问题来了,该如何找到数据呢?通常有以下
一、大数据分析的五个基本方面 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2、数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也
谷歌公布了一项重要研究成果–电影票房预测模型。该模型能够提前一个月预测电影上映首周的票房收入,准确度高达94%。这在业内引起了强烈讨论,不少内人士认为该模型非常适合好莱坞电影公司通过预测票房来及时调整电影营销战略,但同时也有吐槽者暗示谷歌的票房预测模型别有用心,旨在鼓动电影公司购买其搜索引擎广告。那么,孰是孰非,谷歌票房预测模型以及大数据在电影行业的应用是嘘头,还是大有来头,让我们来一探究竟。 谷歌票房预测模型的基础:电影相关的搜索量与票房收入的关联 谷歌的票房预测模型是大数据分析技术在电影行业的一个重要
如今,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等事情仅仅只是个开始。当然,也有很多人直接批判大数据或大数据营销给我们造成隐私威胁。大数据到底是什么?它又有着哪些价值呢?
大数据时代,大数据分析行业水涨船高,很多身边的朋友都想学习一下如何进行大数据分析。经常有人问我该怎么选择大数据分析工具。也对,面对市面上那么多大数据分析工具,大家在选择的时候都会懵一下。
诉讼案件会产生大量文档,而这些文档蕴藏的数据对此后同类型案件的代理和审判具有很高的参考价值。法律业大数据的时代已悄然到来。天同律师事务所是一个专注于商事诉讼的小律所,却希望通过实施诉讼大数据的战略,从
说到三大信息技术大家都很清楚,指的是云计算、大数据和人工智能,在人工智能(AI)快速发展的当下,例如常见的大数据分析、人工智能芯片生产的智能机器人等等,在工作、生活、教育、金融、科技、工业、农业、娱乐等各个领域随处可见,那么三大信息技术在智能监控中又有哪些应用呢?今天我们就结合安防监控系统EasyCVR平台,来给大家具体介绍一下。
大数据的出现催生出产业人才缺口瓶颈,在大数据挖掘项目的实施方面,被调查公司普遍缺乏相关的技术能力。75%以上的公司表示在人员和培训方面存在障碍,会大数据挖掘技术的人才很热门,但是比较难找而且昂贵,会 Hadoop 技术的数据挖掘人才更是奇缺。
AnalyticsZoo是由Intel开源,基于Apache Spark、TensorFlow、Keras和BigDL的大数据分析+AI平台,能够帮助用户利用Spark的各种流水线、内置模型、特征操作等,构建基于大数据的深度学习端到端应用。
<数据猿导读> 同程旅游与中国旅游研究院合作,探索互联网+时代的旅游大数据应用;百度与上海复旦合作,借“松果计划”培养大数据专业人才;美国创企Zerto完成2000万美元E+轮融资,为企业提供“灾难恢
大数据是推动创新型国家建设的重要战略资源,大数据对经济发展、社会治理、国家管理、人民生活都产生了重大影响。
大数据分析工具使用户能够分析各种各样的信息——包括结构化事务数据和社交媒体帖子、Web服务器日志文件及其他形式的非结构化和半结构化数据。一旦组织决定要购买一个大数据分析工具,下一步就是制定一个流程,评估可用的产品,然后从中找到一个最适合你需求和要求的产品。 下面我们将介绍在评估各种大数据分析工具符合企业需求的程度时可能用到的必备特性和特定属性。然后,你再编写一个预案请求(RFP),说明使用这些工具将如何解决组织的需求。 评估标准 建模技术的广度与深度。供应商已经应用了不同级别的建模,并且相应地开发了不同复杂
大数据对于企业成功所起到的关键性作用在各行各业都正飞速显现出来,但是在高管人员看来,很多企业并未完全准备好利用这一趋势以实现大数据价值的最大化。贝恩公司对来自世界各地的400多家年收入超过10亿美元的企业的高管进行了访谈,并与他们深入地探讨了所在公司在数据收集和分析能力、决策速度以及效率等各方面的表现。 访谈结果令人吃惊:仅有4%的企业被认为真正擅长于大数据分析—— 他们能够围绕设定的业务重心调动合适的人员,使用有效的工具并收集合理的数据,并根据大数据分析的发现改变企业运作的方式或者提高
软件和服务的大数据分析市场收入预计将从2018年的 42B增长到2027年的 103B,复合年增长率(CAGR)为10.48%。这就是为什么,大数据分析认证是业内最全神贯注的技能之一。 在这个“大数据分析应用领域”文章中,我将带您进入各个行业领域,在这里我将解释大数据分析如何使它们发生革命性变化。
《中国大数据技术与产业发展报告(2014年)》针对2015年度大数据发展做了十大预测,他们分别是: 趋势一、结合智能计算的大数据分析成为热点 大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。要达到这一目标,需要提升对数据的认知计算能力,让计算系统具备对数据的理解、推理、发现和决策能力,其背后的核心技术就是人工智能。近些年,人工智能的研究和应用又掀起新高潮,
本文探讨了大数据分析所面临的10个最重要的隐私风险。这些风险包括隐私泄露、无法匿名化、屏蔽数据可能泄露个人信息、基于解释的不道德行为、大数据分析并非100%准确、歧视、涉及到的个人几乎没有法律保护、大数据可能永远存在、对电子证据发现的影响以及使专利和版权变得无关紧要。在使用大数据分析时,组织应在实际使用分析之前确定相关的隐私和信息安全影响。
当前,安防大数据的应用也越来越多,但真正将大数据的挖掘和应用落到实处,转变为商业模式的还是很少,目前很多大数据概念都是噱头。后期安防厂家会进行分化,部分传统安防厂家更加专注于某固定安防领域继续深耕,专注于产品和技术,一部分安防厂家会向大安防集成平台转变,专注于业务整合和数据分析处理。
在中国,从2013年大数据元年始,上至国家总理,下至普通平民,大数据的词汇已经深入人心,大家都觉得大数据是个好事,但基本上都是叫好不叫坐,尤其是在传统企业中。现今的中国,大数据在互联网、电商、金融等行业都得到了很好的发展应用,而在传统企业举步维艰,究其原因,一般都有如下几点问题: 一是数据量太少的困扰。一般传统的大中型企业都已经进行了信息化的过程,也有了企业的完整的ERP系统,数据都已经采集到结构化数据库中,但这些结构化数据的量级和大数据PB级的量级相比,差之甚远。面对这种小量的数据,企业的DBA的解决方案
数据分析的概念对于大家来说早已司空见惯,数据分析技能目前也已成为求职者和工作场所人员的一个亮点。对于面对自身累积的庞大财务数据,业务数据和运营数据,流量数据及其他数据资产的公司,公司如何利用大数据并进行大数据分析?我们从以下几个方面来了解一下。
本期关键词 经典统计学与大数据 人物档案 Thomas,北京人,毕业于首都经济贸易大学,目前在一家做个性化推荐的新闻客户端公司任职,主要从事数据挖掘方向的用户研究,基于用户行为、态度等各方面的数据进行分析,以及帮助技术团队梳理自己的推荐算法逻辑。 将大数据和调研数据有效地结合,得到更有价值的数据 DA:您是如何入行的? Thomas:我是2009年本科毕业,专业是统计学,毕业之后就在零点咨研究集团做数据分析工作,因此算是一毕业就入行了吧。 DA:请您讲述一下您的工作经历,目前的工作职责(做哪块),工作中曾
随着互联网的兴起,人工智能和大数据成为了热门领域,越来越多的企业开始通过对数据的挖掘分析来为商业决策提供建议,在国内市场,人工智能和大数据领域人才出现巨大的缺口。而数据分析师入行需要的技术能力较易,转行/自学性价比极高,成为大数据领域的热门职业。
再更一篇技术杂谈类的文章。。。粉丝甲:所以这就是你拖更系列文章和视频的理由吗???粉丝乙丙丁:就是!就是!都断更多久了?我:咳。。。最近杂事缠身,还望恕罪!下面是食用须知:
被大数据分析算法刷屏的各种推荐,刷个抖音,被频繁的推荐可能认识的人,其中就包括分手一年多的前女友;淘宝闲逛,推送的都是你妈妈搜索过的中老年大码女装;微博浑水,你多看了两秒钟“十二星座理想中的另一半”,往下刷的微博几乎都是关于星座的....
据国外媒体CNBC报道,大数据给德国足球国家队带来了竞争优势。SAP和德国足协联手开发了两款大数据分析应用,助德国队征战2016欧洲杯。 2006年世界杯四分之一决赛,德国与阿根廷点球决胜负,当时的门将延斯·莱恩(Jens Lehmann)随身带了一张起皱的纸。那是他的守门教练写给他的备忘单,包含如何阻挡阿根廷潜在的点球手的小贴士。德国最终以4比2的比分赢得点球战。 10年后,德国现任门将曼努埃尔·诺伊尔(Manuel Neuer)则拥有更为先进的“武器”。该武器也帮助他在欧洲杯半决赛与意大利令人窒息的点球
即将逝去的2013年,被认为是具有跨时代意义的“大数据元年”。在这一年,数据比以往任何时候都要宝贵,甚至成为可以与石油资源相媲美的新能源,大数据被认为是继信息化和互联网后整个信息革命的又一次高峰。然而,大数据不是口号,需要更多的企业付诸实践,从单调的数据中挖掘出潜在价值。 年初的一项调查曾指出,28%的全球企业和25%的中国企业已经开始进行大数据实践。为了进一步了解中国企业大数据应用的真实情况,IT168近期联合ITPUB、ChinaUnix展开了一项有关大数据应用与趋势的专
导读: 美国国防部长卡特曾赴硅谷招募顶尖科技人才。近年来的信息大爆炸使得五角大楼不得不将目光聚焦硅谷,以打击反恐。神秘的大数据平台Palantir就是美国CIA、FBI等寻求的合作对象。Palant
2015年,全球大数据和分析市场的规模将达到1,250亿美元。国际数据公司(IDC)和国际分析协会(IIA)在不同的网络广播中,都谈到了它们对2015年大数据和分析市场的预测。以下是其中一些要点: 安全软件将成为大数据分析的杀手应用 大数据分析工具将是第一道防线,它结合了机器学习、文本挖掘和本体建模,提供整体及综合性安全威胁预测、检测、阻止和预防程序。(IIA) 物联网(IoT)分析将大热,五年的年均复合增长率为30% 物联网将成为数据/分析服务的下一个重要关注点。(IDC)在物联网潮流侧重于数据生成和生
Crowds®系列研究中的一部分。这个系列报告将大数据分析定义为最终用户能够访问、分析和管理Hadoop生态体系
提高交通安全、改善医疗服务、提升环境效益——专家认为大数据技术在高级图像分析和图像识别领域潜力无限。 挪威卑尔根Uni Research公司的科学家Eirik Thorsnes表示:“计算机的高级图像
2018年4月28日,教育部高等教育司发函〔2018〕18号《教育部高等教育司关于公布有关企业支持的产学合作协同育人项目申报指南(2018年第一批)的函》。
领取专属 10元无门槛券
手把手带您无忧上云