首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据结构视频教程哪个

id=1207 目前,具我粗略不完全统计,网络上流传的数据结构视频教程大概有80个以上,这些视频我都发布到我的网站了,欢迎大家随时过来下载,数据结构视频教程下载,其中大多数都是高校老师录制的,还有一些是学习机构录制的...下面我先给大家介绍一下我手里有哪些数据结构视频教程。 数据结构视频教程 数据结构视频教程 好了,上面是我目前搜集到的所有数据结构视频教程了,大家觉得怎么样?...个人认为: 第一名: 数据结构视频教程这个 数据结构视频教程:小甲鱼全套教程之C C++数据结构系列教程 这个视频讲解的非常棒,小甲鱼非常幽默,听后印象非常深刻。...第二名: 数据结构视频教程这个 数据结构视频教程:数据结构视频教程 严蔚敏 清华大学的教授,严蔚敏老师,讲的那是相当的好了,细致入微。...第三名: 数据结构视频教程这个 数据结构视频教程:吉林大学_徐沛娟_数据结构_(1-64讲) 徐老师讲课非常生动,例子用的很棒! 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

1.6K10

AI换脸鉴别率超99.6%,微软用技术应对虚假信息

从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息(disinformation)传播到全世界。...以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频真伪。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...作为目前学术界最大的合成视频数据库之一,由慕尼黑技术大学创建的 FaceForensics 数据库涵盖了经过以上三种换脸算法编辑的公开视频,以供学术研究使用。...表1:针对已知换脸算法的识别测试结果 更重要的是,一般的换脸鉴别方案需要针对每一种换脸算法研发专门的换脸鉴别模型,想要鉴别一张图像的真伪,需要逐个尝试所有模型。

3.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AI换脸鉴别率超99.6%,微软用技术应对虚假信息

    从生成足以以假乱真的名人不雅视频开始,很多使用者将这个“换脸神器”当成了视频造假工具,并通过社交网络将虚假信息(disinformation)传播到全世界。...以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频真伪。...Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。...作为目前学术界最大的合成视频数据库之一,由慕尼黑技术大学创建的 FaceForensics 数据库涵盖了经过以上三种换脸算法编辑的公开视频,以供学术研究使用。...表1:针对已知换脸算法的识别测试结果 更重要的是,一般的换脸鉴别方案需要针对每一种换脸算法研发专门的换脸鉴别模型,想要鉴别一张图像的真伪,需要逐个尝试所有模型。

    3.1K20

    人工智能怎么审核视频 人工审核和智能审核哪个

    喜欢玩短视频的人都知道,如果想要发布视频,平台会进行审核,无论是从图像还是音频方面都会进行审核。...但是现在技术发展的足够快,审核视频的方式也变得越来越多元化,尤其是人工智能技术的出现,为不少平台在审核视频方面创造了便利。究竟人工智能怎么审核视频?人工审核和智能审核哪个准确率更高?...人工智能怎么审核视频 人工智能怎么审核视频?人工智能审核视频的方式就是将用户上传的视频进行截取,针对截取的每一段视频进行审核,而不是将视频全部浏览一遍。...人工审核和智能审核哪个 两者各有各的优点,同样也有一定的缺点。最好的解决办法就是两个审核方式结合起来,能够达到最好的效果。...所以两个审核方式还需要看平台的需求,哪个更合适。 无论是平台还是视频的发布者,最好都了解一下人工智能怎么审核视频

    5.2K40

    “一网打尽”Deepfake等换脸图像,微软提出升级版鉴别技术Face X-Ray​

    虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。 微软亚洲研究院团队近期提出的Face X-Ray算法或将改变这种局面。...此前的换脸鉴别方法主要从第二步入手,通过检测换脸过程中产生的瑕疵,确定图像的真伪,但是,这一瑕疵并不唯一确定,不同的换脸算法合成时造成的瑕疵大相径庭。 ?...因此,Face X-Ray 通过确定图像是否包含两种不同的噪声,就能判定一张人脸图像为合成图像的几率。...但二分类方法的局限在于不具备通用性:只有换脸图像采用的是已知换脸算法,如 DeepFake、FaceSwap、Face2Face 等生成,才有可能达到较高的识别率(99%以上),因为 AI 模型就是通过大量学习这些算法生成的人脸图像去提升识别能力...Face X-Ray则把换脸鉴别技术推到了更高层次。首先具有通用性,Face X-Ray背后的算法是“类自监督学习”的一种方法,“我们不需要这些(换脸图片)数据,也不用知道是哪个换脸算法,就能鉴别。”

    2.8K20

    优Tech分享|人脸安全前沿技术研究与应用

    具体包括在介质检测方向上介绍活体本质特征挖掘、跨场景学习方法和自适应训练策略;在内容取证方向上分别介绍基于图像和基于视频的取证方法;在对抗攻防方向介绍隐蔽式对抗攻击和高效查询攻击方法,多个维度有效筑牢人脸安全的防线...此外,为进一步去除人脸结构信息对活体鉴别的影响,我们还提出了基于结构解构和内容重组的活体检测算法[2]。...整体的训练流程采用迭代式的更新策略,最先学好初始化的域信息鉴别器,然后基于鉴别器迭代进行样本分配权重和特征分配权重学习。...03/人脸内容取证  ·人脸图像内容取证 针对人脸伪造图像,我们分别从伪造模式建模、特征增强学习以及对比学习框架设计等角度切入,促进模型对伪造痕迹的捕捉,有效鉴别真假。...·人脸视频内容取证 对于伪造视频,我们分别提出时空不一致建模和多片段学习算法,充分捕捉时序运动中的伪造痕迹,在视频维度有效鉴别真伪

    2.5K20

    鉴别人脸深度伪造,人民中科、中科院自动化所联合提出基于身份空间约束的检测方法

    随着深度学习等技术的发展,机器自动生成内容的水平不断提高;其中深度伪造(Deepfakes)更是内容生产中的热门技术,在短视频、直播、视频会议、游戏、广告、军事等领域已得到了广泛应用。...深度伪造技术的兴起主要基于图像和音频合成技术的发展,是运用深度学习模型和数据等各种资源,合成具有特定内容音视频的技术;其中利用深度伪造技术生成逼近实拍的人脸图像的技术又被称为伪造人脸或假脸合成技术。...一、基本思想 目前现有的人脸交换检测器简单使用基于 CNN 的分类器将人脸图像映射到真伪标签上,在已知的操作方法上获得了极好的精度。然而,他们无法识别由未知的面部交换模型产生的假面部图像。...鉴别方除了挖掘待测图像的伪造线索外,可以更加充分地利用其它信息资源。 使用参考人脸图像的鉴别思路在实际应用中是可行的。...实际应用的伪造人脸图像鉴别任务绝大多数情况针对的是重要著名人士,对于鉴别方而言获取相应人物的真实人脸图像并不困难。除此之外该框架相比于其他鉴别模型无额外的数据要求。

    2.3K20

    为什么说GAN很快就要替代现有摄影技术了?

    然而,在过去几年中,没有哪个域比计算机视觉更受其影响。 随着科技的发展,具有超高分辨率视觉吸引力的图像变得越来越普遍。...但是拍卖商不希望随意出售作品,所以他们雇了一名侦探来对画作辨别真伪。侦探手中有这幅名作的真迹,所以若是你随意拿出一个作品,侦探立刻就能知道你的画作是赝品(甚至完全不同)。...人脸合成 由于生成网络的存在,使得人脸合成成为了可能,这涉及到从不同角度生成单个人脸图像。 这就是为什么面部识别不需要数百个人脸样本,只需要用一个样本就能识别出来的原因。...若是这么的技术被坏人利用,后果是不堪设想的。完美的假图像还需要一种方法来识别和检测它们,我们需要对这类图像的产生进行管制。...目前,GAN已经被用于制作虚假视频或“Deepfakes”,这些视频正以消极的方式被使用着,例如生成名人假的不良视频或让人们在不知情的情况下“被发表言论”。

    86610

    中国模式识别与计算机视觉大会|多模态模型及图像安全的探索及成果

    如今我们想要训练一个大模型,不管是参与人的模型还是像 GPT-4V,都需要大规模的数据,而 OCR 在提供数据方面是一个非常的工具,OCR 不仅能够高效录入数据,并且还能够处理不同格式的的数据。...下图展示了 AI 图像安全在文档图像的篡改以及人脸真伪具体案例:1、篡改种类图像篡改指的是对数字图像的未经授权或欺骗性修改,以改变图像的内容或意义。分为四种类型:复制移动、拼接、擦出、重打印。...服务稳定:提供高可靠性、弹性可伸缩、高并发承载的云端服务,扩展性,算法的持续迭代优化对用户使用稳定性无影响。多样部署:提供公有云 API 以及私有化部署两种方式。...4、AIGC假图鉴别在安全领域,合合信息紧跟时代步伐做了生成式AI的鉴别工作,主要包括身份验证与访问控制、移动设备的安全检测、数字图像真实鉴定。...郭丰俊博士以人脸鉴别场景为例,提出该鉴别体系的架构是通过通过多个空间注意力头来关注空间特征,并使用纹理增强模块放大浅层特征中的细微伪影,增强模型对真实人脸和伪造人脸的感知与判断准确度,其中纹理的细节变化是人脸鉴别的一个非常重要的依据

    38810

    国内人脸识别第一案来了,我们来谈谈国外法规和隐私保护技术

    据了解,“Deepfake鉴别挑战赛”的目标是,找到一款能检测视频是否被换过脸的工具,并且它能被每个人便捷操作。...Turek)认为,制造deepfakes的人一直在不断地适应各种检测技术,因此不会存在一个一招制敌的算法或技术解决方案,而是需要一套全局性的方案,因此,无论是主动给图片添加水印还是通过“找茬”来辨别真伪...功能上,长毛猫Angora 记忆力、动手能力强,可以快速找到换脸视频的原版本,或者是不同版本。而短毛猫 Maru 则嗅觉敏锐、火眼金睛。它可以弥补长毛猫 Angora 的不足。...用区块链技术鉴别假图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。...通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别假图片,区块链技术还能鉴别视频

    2.4K20

    国内人脸识别第一案,我们来谈谈国外法规和隐私保护技术

    据了解,“Deepfake鉴别挑战赛”的目标是,找到一款能检测视频是否被换过脸的工具,并且它能被每个人便捷操作。...Turek)认为,制造deepfakes的人一直在不断地适应各种检测技术,因此不会存在一个一招制敌的算法或技术解决方案,而是需要一套全局性的方案,因此,无论是主动给图片添加水印还是通过“找茬”来辨别真伪...功能上,长毛猫Angora 记忆力、动手能力强,可以快速找到换脸视频的原版本,或者是不同版本。而短毛猫 Maru 则嗅觉敏锐、火眼金睛。它可以弥补长毛猫 Angora 的不足。...用区块链技术鉴别假图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。...通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别假图片,区块链技术还能鉴别视频

    2.7K20

    国内人脸识别第一案,我们来谈谈国外法规和隐私保护技术

    据了解,“Deepfake鉴别挑战赛”的目标是,找到一款能检测视频是否被换过脸的工具,并且它能被每个人便捷操作。...Turek)认为,制造deepfakes的人一直在不断地适应各种检测技术,因此不会存在一个一招制敌的算法或技术解决方案,而是需要一套全局性的方案,因此,无论是主动给图片添加水印还是通过“找茬”来辨别真伪...功能上,长毛猫Angora 记忆力、动手能力强,可以快速找到换脸视频的原版本,或者是不同版本。而短毛猫 Maru 则嗅觉敏锐、火眼金睛。它可以弥补长毛猫 Angora 的不足。...用区块链技术鉴别假图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。...通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别假图片,区块链技术还能鉴别视频

    2.1K30

    AI版“创造101”来了!出单曲拍电视剧,真人偶像失业危机?

    然后,AI模型再通过提取视频关键帧,人脸对齐等技术,让人脸完美“融合”到原视频。这类视频仿真度高、欺骗性强,肉眼一般难以识别真伪。...2019年11月,我国发布了《网络音视频信息服务管理规定》,该规定明确指出:网络音视频信息服务提供者应当部署违法违规音视频以及非真实音视频鉴别的相关技术方案。...2019年9月,Facebook宣布了全球Deepfake检测挑战赛,旨在号召研究人员寻找“打假”的有效方法,提升鉴别视频的技术,维护和谐的网络环境。...随后,Google AI 开源 Deepfake 视频检测数据集,希望能帮助研究者找到更好的鉴别视频的方法。...如何在现有体系里平衡虚拟人物和真实人物的关系,把握现实和虚拟的界限,我们还有待探寻。

    1K20

    DeepFake克星来了!简单2步算法,造假图像无处可逃

    近期,针对DeepFake可能带来的负面影响,研究人员开发了一个基于神经网络的神奇,能够鉴别DeepFake图像的真伪。 DeepFake的克星,来了!...针对这一现象,来自加州大学河滨分校的研究人员最近便提出了一种基于神经网络的神器,分分钟鉴别照片真伪! ?...该算法还没有扩展到包含对深度假视频的检测。...鉴别DeepFake的真伪在科研中可以说是一种挑战,而这种挑战的出现是因为它以一种人类肉眼无法分辨的方式被操纵着。...下一步,DeepFake视频也将“在劫难逃” DeepFake的图像目前已然能够鉴别真伪,那么下一步就是视频了。 Roy-Chowdhury表示现在需要对算法做一个扩展,并应用到视频中。

    1.5K30

    挑战 11 种 GAN的图像真伪,DeepFake鉴别一点都不难 | CVPR2020

    既然我们可以用GAN来合成难辨真伪的假图,反过来我们也可以用GAN去鉴别图像的真假。GAN一般基于CNN结构,当用来作为鉴伪模型时也有很多不足。...来自伯克利和Adobe的研究者最近提出了一种通用的鉴别方法,通过训练一个单一的ProGAN就可以鉴别其他11种 GAN 生成图像的真伪,并且具有较高的准确率和较强的鲁棒性,对于新提出的StyleGAN2...新的模型 作为一个鉴别图像真伪的模型,除了考虑对抗现有的GAN之外,还需要评估其对未来的影响力。当合成图像的技术不断发展时,它是否还能击败新的GAN也是我们所关注的。...可视化分析 上面的实验分析表明,一个单一的ProGAN就能够鉴别其他各种GAN生成图像的真伪了。这只是从结果上分析,那么它内在的本质是怎样的呢?训出来的模型到底学到的是什么呢?...论文的方法虽然泛化性能很高,但是毕竟不是100%准确的鉴别图像真伪

    4.2K00

    影像篡改与识别(二):数字时代

    ; 扭曲变形,将图像中的一些特定目标区域进行无规则的平移、旋转、拉伸等操作,产生局部扭曲或者畸变的效果,比如恶搞人脸视频中的夸张表情。...添加特效:在基本不改变人脸面部关键特征的前提下,利用电影动画技术为面部赋予一些特定的表情和动作。 面部重构:通过一些先进的视频游戏技术将人脸图片重新渲染成3D动画人物。...辨别数字影像真伪也是一个技术活儿 众所周知,篡改的图片通常满足两个客观事实: 图像RGB数据上确定发生了局部变化; 在图像RGB数据上却无法直接找到这种局部变化的位置; 那么,数字时代的鉴别方法能做些什么呢...实际上,纸币水印[6]是利用一种带有凹凸图案的预制专用模具,通过改变纸浆纤维的密度实现的,透光性的地方纸张纤维“稀”一点,透光性不好的地方纸张纤维“密”一点,从而呈现出具有较强立体感的图案。...对于数字时代的检测识别,虽然已经出现了很多有效的鉴别特征,但是它们大多数都只能应用于某些特定的场景,这自然是远远不够的。

    2.2K30

    视频造假术,你值得拥有

    也就是说,他们能够利用相关音轨伪造一段令人难辨真伪视频。 利用AI系统,用户可以任意编辑人类语音,Adobe曾表示它可以像 Photoshop 编辑图片一样用于调整视频中的发音和对话。...通过人脸检测和五官识别,对人脸的关键点实时追踪,让人们在动态视频中可以对自己脸进行改造。 这一技术属于动作捕捉技术中的一个分支,叫面部捕捉。...这些脸上的黄点,就是人脸表情变化中的关键点,通过面部追踪,计算机只需要这些信息就能合成表情。...AI让越来越多的人都有能力进行伪造,但研究人员也不断在开发更加精密的技术来增强音频、图片和和视频鉴别。通过不断增加造假难度,使得非法分子造假的成本和技能要求越来越高。...现在,鉴别AI所做的伪造和处理其实并不难,模糊处理是一种最常见的方法,低分辨率就会让它“一看就是假的。” 除了画质,还有画幅的甄别。在短视频里,画面里的一点改动凭借人的肉眼是很难识别的。

    1.1K20

    美警察跪杀黑人视频为AI伪造?女政客抛出23页调查报告,Deepfake真有那么神?

    我们知道,Deepfake主要应用了生成对抗网络(GAN),只要有原始人物的照片或视频就能实现目标视频中的人脸替换。基于GAN的博弈优化原理,最终生成极度逼真的伪造视频,几乎能够以假乱真。...如果真的如她所说,那么未来,想要给谁按上一个莫须有的罪名,岂不是换一张脸伪造一个视频就可以了吗? 有问题就有对策,鉴别Deepfake的真伪在科研中就是为了应对这种人类肉眼无法进行分辨的挑战。...Facebook 为此发起了 Deepfake检测挑战赛;去年,谷歌 AI 还强势推出了 Deepfake 视频检测数据集,势将一同与假视频死磕到底。...利用人脸编辑,可以根据给定的人脸图片,制作从年轻变老,戴眼镜到不带眼镜,男性变女性等效果。 利用video2video,可以将给定的单张目标人物图片,根据驱动视频的人物动作进行变换。...除了人脸,肢体动作生成问题也不大。pose estimation就可以按照驱动视频生成给定人物跳舞的效果。 所以伪造这样一个视频,技术上是可以行的通的。

    1.4K30

    远程人脸识别系统技术要求 安全分级

    采用近红外光源照射人脸,通过采集人脸在近红外光源下的图像视频进行人脸肤质材料的分析,从而判定是否为活体。...一次性鉴别机制 应防止与人脸识别身份鉴别有关的鉴别数据的重用。...例如采用近红外光源照射人脸,通过采集人脸在近红外光源下的图像视频进行人脸肤质材料的分析,从而判定是否为活体。...:打印的普通人脸照片、纸质高清人脸照片、手机屏幕重放的人脸照片攻击); 防纸质面具伪造:应能检测或防止使用绝大多数人脸纸质面具的仿冒行为; 防视频伪造:应能检测或防止使用拼接、替换、翻拍视频进行伪造...; 防人脸CG合成伪造:应能检测或防止使用CG技术将单张或多张人脸图像合成人脸视频或3D人脸模型进行伪造; 防假体面具伪造:应能检测或防止使用绝大多数人脸3D假体面具(树脂面具、硅胶面具)的仿冒行为

    4.2K30
    领券