首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

全新AI系统可以检测出视频的人年龄和性别

科学家开发了一种AI系统,可以识别视频的人,并且更快更准确地检测他们年龄和性别。 据俄罗斯高等经济学院研究人员称,这一发展已经成为安卓移动应用离线检测系统基础。...现代神经网络检测视频的人性别,准确率为90%。 而年龄预测情况要复杂得多。传统神经网络考虑离散年龄值。在每个视频,网络估计图像的人处于特定年龄概率。...例如,如果网络预测是一个人年龄有30%概率为21岁,10%概率为60岁,其结论将是这样:这个人有30%可能性是21岁,有10%可能性是60岁。...由于观察条件不同,甚至头部轻微转动,同一个人在不同视频帧下年龄预测差异在5岁左右。 研究人员找到了一种优化神经网络运行方法。他们实施了一种新方法来聚合神经网络为每个帧产生置信水平。...面部识别分析软件系统通常包括几个独立神经网络。其中一个人识别出这个人,另一个确定性别等。 研究人员已经开发出具有多个输出有效神经网络。

1.3K20

人脸检测通用评价标准

,就是检测出来的人脸占总人脸比例; 精准率就是检测为人脸实际有多少是真正的人脸; 精准率对立就是误率,也就是检测为人脸实际有多少是非人脸;精准率+误率=1; 对于一个固定数据集...比如一个模型精准率很高,输出出来框几乎都是正确,这个模型遍历完测试集,都没有达到100个误,那么它召回率也不一定很高,因为它可能漏检多; 还有一种情况是,模型有很高召回率,实际的人脸都能被检测出来...,但是输出出来框有很多错误,还没有遍历完数据集就已经达到100个误了,那么它原本很高召回率在“100张误下召回率”这个评价标准也体现不出来。...所以,固定误检测召回率方式能够测出模型综合性能。...通过遍历阈值,我们就能够得到多组检测率和误数目的值,由此我们可以在平面直角坐标系画出一条曲线来: 以x坐标表示误数目,以y坐标表示检测率,这样画出来曲线称之为ROC曲线。

2.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸检测发展:从VJ到深度学习(上)

    为了纪念这一工作,人们将这个人脸检测器用两位科研工作者名字命名,称之为Viola-Jones人脸检测器,或者简称为VJ人脸检测器。...关于得分,需要考虑检测器两方面的表现,一是检测率,也即对人脸召回率,检测出来的人脸占总人脸比例——测试集中一共标注了100张人脸,检测器检测出其中70张人脸,则检测率为70%;二是误(也称为虚警)...数目,即检测器检测出来的人脸中出现错误(实际上不是人脸数目——检测器一共检测出80张人脸,然而其中有10个错误,只有70个是真正的人脸,那么误数目就是10。...在这两个指标上,我们所希望总是检测率尽可能高,而误数目尽可能少,但这两个目标之间一般是存在冲突;在极端情况下,如果一张脸也没有检测出来,那么误数目为0,但是检测率也为0,而如果把所有的窗口都判别为人脸窗口...从100个误检测率来看,从最初VJ人脸检测器30%,发展到现在已经超过了90%——这意味着检测器每检测出50张人脸才会产生一个误,这其中进步是非常惊人,而检测器之间比拼还在继续。

    1.7K70

    走近人脸检测:从 VJ 到深度学习(上)

    为了纪念这一工作,人们将这个人脸检测器用两位科研工作者名字命名,称之为Viola-Jones人脸检测器,或者简称为VJ人脸检测器。...关于得分,需要考虑检测器两方面的表现,一是检测率,也即对人脸召回率,检测出来的人脸占总人脸比例——测试集中一共标注了100张人脸,检测器检测出其中70张人脸,则检测率为70%;二是误(也称为虚警)...数目,即检测器检测出来的人脸中出现错误(实际上不是人脸数目——检测器一共检测出80张人脸,然而其中有10个错误,只有70个是真正的人脸,那么误数目就是10。...在这两个指标上,我们所希望总是检测率尽可能高,而误数目尽可能少,但这两个目标之间一般是存在冲突;在极端情况下,如果一张脸也没有检测出来,那么误数目为0,但是检测率也为0,而如果把所有的窗口都判别为人脸窗口...从100个误检测率来看,从最初VJ人脸检测器30%,发展到现在已经超过了90%——这意味着检测器每检测出50张人脸才会产生一个误,这其中进步是非常惊人,而检测器之间比拼还在继续。

    73260

    边缘计算在地铁等细分场景下如何应用? | 公开课回顾

    这次疫情我们快速推出了瞬视体温筛系列,利用红外成像与可见光成像进行叠加运算,实现快速筛体温,最高级产品我们用是640*480红外感知芯片,1分钟通过测温人数可以达到780人,在整个测温市场,...角蜂鸟是我们与英特尔合作,基于人工智能开发套件,主要是人工智能研发公司和教育培训机构,给学生上人工智能实训课,通过USB插上电脑,20行代码搞定人脸识别,这个可以检测出20种实物模型,可以做快速的人工智能开发...对镜头抓拍到的人脸进行跟踪,摄像头对暗光人脸区域补光,对比效果不好侧脸进行筛除,在整个过程挑选最佳镜头。 第二,人脸预筛。...智慧园区里智慧灯杆,我们和其他公司做不同,比如其他公司在灯杆上一个摄像头,后端会有一个视频云,在这个视频云里做分析;如果加了一个声音控制,后端会有一个音频云,基本上是前端挂了几个设备,后边就有几朵云...还有今年刚刚推出来防疫体温筛查系统,是针对大人流量和超大人流量情况下自动筛系统。

    93620

    技术分享 | 基于Intel Analytics Zoo的人脸识别应用与实践(上)

    众多应用需求,身份识别对比无疑是其中关键,目前通过人脸来快速识别确认人员身份是常用一种方法。...采用快速人脸检测识别技术可以从视频图像实时检测出人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。...目前,人脸识别产品已广泛应用于金融、司法、军队、公安、边、政府、航天、电力、工厂、教育、医疗及众多企事业单位等领域。...基于Analytics Zoo的人脸识别一般流程如下图所示。首先Producer程序从视频源服务器解码、逐帧读取视频画面发布至Kafka集群。...利用Analytics Zoo预训练的人脸识别网络模型,Spark各节点可以同时对多路视频图像帧人脸进行检测和对比,最终识别人脸。 ?

    1.6K31

    深入浅出谈人脸识别技术

    在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前机器学习技术,难以从图片中取出合适特征值。轮廓?颜色?眼睛?...之所以要有人脸检测,不光是为了检测出照片上是否有人脸,更重要是把照片中人脸无关部分删掉,否则整张照片像素都传给f(x)识别函数肯定就不可用了。...在人脸检测环节,我们主要关注检测率、漏检率、误率三个指标,其中: 检测率:存在人脸并且被检测出图像在所有存在人脸图像比例; 漏检率:存在人脸但是没有检测出图像在所有存在人脸图像比例; 误率...:不存在人脸但是检测出存在人脸图像在所有不存在人脸图像比例。...CNN卷积网络通常在每一层卷积层后一个激励层,激励层就是一个函数,它把卷积层输出数值以非线性方式转换为另一个值,在保持大小关系同时约束住值范围,使得整个网络能够训练下去。

    1.6K60

    走近人脸检测:从VJ到深度学习(下)

    为了解决R-CNN速度问题,紧接着出现了Fast R-CNN和Faster R-CNN,从名字上可以看到,它们速度一个比一个快。...目前的人脸检测器在FDDB上已经能够取得不错性能,不少检测器在100个误检测率达到了80%以上,这意味着它们检测出40个以上的人脸才会出现一个误。...最直接地,这说明有的检测器虽然检测出人脸,但是检测框准确度比较低,但其实造成这种不一致性另一个重要原因还在于检测框与标注框之间差异性。...FDDB测试图像上的人脸包含了从表情到姿态、从光照到遮挡等各个方面的变化,因而是一个相对通用数据集,但是在实际应用,不同场景下人脸往往呈现出比较鲜明特点,例如在视频监控场景下,由于摄像头架设位置较高和分辨率有限...IJB-A不仅包含静态人脸图像,还有一部分是从视频中提取视频帧。

    97080

    【一条工具】检测摄像头神器,让偷拍无处遁形

    一条IT各位小伙伴们,由于公众号做了乱序推送改版,为了保证公众号资源推送,能够第一时间及时送达到大家手上,大家记得将一条公众号 星标置顶 ,公众号每天会送上一款实用工具 !...废话不多说,今天给大家带来是一款免费破解版软件——摄。 ? 软件简介 ?...生活,我们出差,或者是和自己小伙伴出去旅游,经常被网上视频或者新闻曝光,多地酒店有隐藏摄像头,一不小心就容易成为片儿主角,哪能怎么办呢?只能让我们自己检测一下了。来动手吧。 ?...将我们手机在整个房间里面走动,就可以轻松测出摄像头,如果手机有震动,记得查看一下手机震动位置是不是虚报。 其次,右上角按钮,是【网络扫描】 ?...注意查看是否存在摄像头,这可是关乎我们名誉呢,针孔摄像头,实在是很可恶,防不胜防啊。 ? 获取方式 ? ? 后台回复【摄】获取安装包 ? ? end

    72530

    AI魔幻行为大赏:细数机器视觉9大应用场景

    它通过采集含有人脸图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。...02 视频监控分析 视频监控分析是利用机器视觉技术对视频特定内容信息进行快速检索、查询、分析技术。...根据这些信息,一方面可以实时报警,由交警介入处理;另一方面,视频索引可以实现高效以图搜图查询,通过车辆轨迹跟踪保留证据,实现非现场执法,可以节省大量警力,并提升交通管理效率 平安城市情报搜集分析:视频分析技术可用于视频动态人脸和基础人脸实时比对...而图像外技术可以大大提高生产效率、速度和生产自动化程度,降低人工成本。...目前,医疗影像诊断主要应用于如下场景: 肿瘤探测:通过图像技术,医疗影像诊断可进行如皮肤色素瘤、乳腺癌、肺部癌变早期识别 肿瘤发展追踪:机器视觉技术可以根据器官组织分布,预测出肿瘤扩散到不同部位概率

    1.2K30

    AI魔幻行为大赏:细数机器视觉9大应用场景

    它通过采集含有人脸图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。...02 视频监控分析 视频监控分析是利用机器视觉技术对视频特定内容信息进行快速检索、查询、分析技术。...根据这些信息,一方面可以实时报警,由交警介入处理;另一方面,视频索引可以实现高效以图搜图查询,通过车辆轨迹跟踪保留证据,实现非现场执法,可以节省大量警力,并提升交通管理效率 平安城市情报搜集分析:视频分析技术可用于视频动态人脸和基础人脸实时比对...而图像外技术可以大大提高生产效率、速度和生产自动化程度,降低人工成本。...目前,医疗影像诊断主要应用于如下场景: 肿瘤探测:通过图像技术,医疗影像诊断可进行如皮肤色素瘤、乳腺癌、肺部癌变早期识别 肿瘤发展追踪:机器视觉技术可以根据器官组织分布,预测出肿瘤扩散到不同部位概率

    2.9K21

    算法优化二——如何提高人脸检测正确率

    零、检测   接上篇博文继续探讨人脸检测相关内容,本文会给出Opencv自带的人脸检测相关对比以及Opnev检测中常用标注等相关操作。...人脸检测是一个非常经典问题,但是还是有一些常见问题出现在实际使用当中:   (1)误(把非人脸物体当作人脸)较多,非人脸图像当作人脸送入后续算法,会引起一系列不良后果。   ...对比下来发现alt和alt2效果比较好,alt_tree耗时较长,default是一个轻量级,经常出现误检测。针对alt和alt2两者,在同一个视频对比检测部分alt要略微好于alt2。...如果视频到很多无用小方框,那么就把minSize尺寸改大一些,默认为30*30。...三、视频标注   视频标注必不可少就是画框和文字标注: //视频画框 for (vector::const_iterator r = faces.begin(); r !

    2K100

    人脸检测与识别的趋势和分析

    人脸检测算法,是基于积分图、级联检测器和Adaboost算法方法,该方法能够检测出正面人脸且检测速度快。...缺点:而在复杂背景,AdaBoost人脸检测算法容易受到复杂环境影响,导致检测结果并不稳定,极易将类似人脸区域误人脸,误率较高。...这种方法存在不足之处在于能量函数在优化时十分复杂,消耗时间较长,并且能量函数各个加权系数都是靠经验值确定,在实际应用中有一定局限性。...,是基于视频人脸检测与识别的,因为没有标准,公共数据集,所以我就用室内场景剧作为训练数据,最后效果很不错,希望以后有同学做人脸,我们可以一起讨论,共同进步,谢谢!...有兴趣朋友,可以看我上传视频,谢谢!(发现检测过程还是有一些问题,主要是因为训练数据集不够) 网址:http://pan.baidu.com/s/1eR6ppQyy 密码:gs9g

    1.7K120

    首都机场启用人脸识别安检,通过效率提升66%

    整合编辑 量子位 出品 | 公众号 QbitAI 在机场,通过安检往往耗时很久,尤其是高峰时段。 现在,首都机场正尝试用新系统,改善安检通道效率。...第一道门机器可以对旅客登机牌和身份证进行核验,第二道门则用来进行人脸拍照,实现身份比对。 ? 这个环节跟之前在高铁站、其他机场应用的人脸识别进站有点像。...这样就完成了行李和人脸有效匹配。 ? 这个系统会在1分钟之内完成安全识别和处置,实现旅客信息和行李信息绑定。...据介绍,有了系统帮助,遇到过人员太多、现场比较混乱情况,工作人员再也不用扯着脖子到处喊“这是谁行李?”而是可以直接叫出旅客名字,请对方配合开包检查。 大概就是这样。...目前,这条通道验放效率,每个小时达到266人以上,与之前安检通道相比,效率提升了66%。 详情可以还看看北京电视台和北京晚报视频报道。 我们贴在下面。 ? ?

    51311

    教程 | 如何构建自定义人脸识别数据集

    第一种方法使用 OpenCV 和 webcam 工具完成两个任务:(1)在视频测出人脸;(2)将人脸图像或视频样本保存到磁盘上。 第二种方法将讨论如何以编程方式下载人脸图像。...图 1:通过使用 OpenCV 和 webcam,我们可以检测出视频人脸,并且将样本存储到磁盘上。这个过程可用于创建一个本地人脸识别数据集。 这种方法适用于以下情况: 1....人脸图像会被存储在这个文件夹,因此我推荐你用人脸主人名字来命名这个文件夹。...不幸是,有时我们需要对这种方法进行调优,以消除误判或者检测出一张完整的人脸,但是对于「近距离」拍摄的人脸图像检测来说,这些参数是一个很好起点。....png 00001.png 00003.png 00005.png 我建议将人脸图像样本存在以图像所属人名字命名子文件夹

    1.8K21

    17年公众号第一篇文章:人脸检测与识别的趋势和分析(被雷锋网、搜狐转发)

    人脸检测算法,是基于积分图、级联检测器和Adaboost算法方法,该方法能够检测出正面人脸且检测速度快。...缺点:而在复杂背景,AdaBoost人脸检测算法容易受到复杂环境影响,导致检测结果并不稳定,极易将类似人脸区域误人脸,误率较高。...这种方法存在不足之处在于能量函数在优化时十分复杂,消耗时间较长,并且能量函数各个加权系数都是靠经验值确定,在实际应用中有一定局限性。...,是基于视频人脸检测与识别的,因为没有标准,公共数据集,所以我就用室内场景剧作为训练数据,最后效果很不错,希望以后有同学做人脸,我们可以一起讨论,共同进步,谢谢!...有兴趣朋友,可以看我上传视频,谢谢!

    69620

    人脸检测与识别的趋势和分析

    Adaboost人脸检测算法,是基于积分图、级联检测器和Adaboost算法方法,该方法能够检测出正面人脸且检测速度快。...缺点:而在复杂背景,AdaBoost人脸检测算法容易受到复杂环境影响,导致检测结果并不稳定,极易将类似人脸区域误人脸,误率较高。...基于特征方法的人脸检测 基于特征方法实质就是利用人脸等先验知识导出规则进行人脸检测。...基于模板方法 基于模板匹配方法思路就是通过计算人脸模板和待检测图像之间相关性来实现人脸检测功能,按照人脸模型类型可以分为两种情况: ① 基于通用模板方法,这种方法主要是使用人工定义方法来给出人脸通用模板...这种方法存在不足之处在于能量函数在优化时十分复杂,消耗时间较长,并且能量函数各个加权系数都是靠经验值确定,在实际应用中有一定局限性。

    1.2K20

    人脸识别长篇研究

    在这个实际案例:检测率=75/100 误率=5/80 漏检率=(100-75)/100 2)人脸识别关键指标: 1000张样本图片里,共600张正样本。...在这个实际案例:检测率=75/100 误率=5/80  漏检率=(100-75)/100 2)人脸识别关键指标: 1000张样本图片里,共600张正样本。...4)FR+安防: (1)智慧城市基础  1、视频分析: 基于视频人脸照片进行远距离、快速、无接触式重点人员布控预警。...在地铁、高速公路卡口、车站卡口、超市反扒、边等安保和监控识别的使用,这种困难明显突出; 11)人脸防伪 伪造人脸图像进行识别的主流欺骗手段是建立一个三维模型,或者是一些表情嫁接。...以上分析种种产品,你都能叫出来名字,是因为这些功能或是技术都有一个实际产品承载点,比如QQ用了即时通讯技术,头条背后智能推荐用了机器学习相关技术,但在我们心目中它不是以一种技术停留在我们心智空间里

    6.2K182

    实时人脸识别系统

    人脸检测器是一种实时人脸识别系统,用于识别人脸,并在输入视频显示人物姓名。 该系统基于 Python 开发,可以识别从不同角度拍摄的人。系统对每个人进行人脸识别处理并将结果显示在屏幕上。...匹配工作是取提取当前人脸特征向量和已知人脸特征向量做内积,计算余弦相似度,在标签数据集中检测出与之相似度最高的人。...实时人脸识别的实际应用过程可以分为以下几步:首先选择好参考人物并输入视频流;在检测到人物后,计算其和参考人物面部范围相似度;当相似度高于指定阈值时,将当前参考人物姓名插入到视频。...播音员和评论员轮流坐在广播电台公共汽车上进行现场直播,我们在监视器上安装了人脸探测器来帮助他们识别跑步者和其他人名字。...因此,人脸检测器用途就是在摄像机查看器显示人们姓名帮助摄像师拍摄。

    3.6K10

    人脸检测与识别的趋势和分析

    Adaboost人脸检测算法,是基于积分图、级联检测器和Adaboost算法方法,该方法能够检测出正面人脸且检测速度快。...缺点:而在复杂背景,AdaBoost人脸检测算法容易受到复杂环境影响,导致检测结果并不稳定,极易将类似人脸区域误人脸,误率较高。...基于特征方法的人脸检测 基于特征方法实质就是利用人脸等先验知识导出规则进行人脸检测。...基于模板方法 基于模板匹配方法思路就是通过计算人脸模板和待检测图像之间相关性来实现人脸检测功能,按照人脸模型类型可以分为两种情况: ① 基于通用模板方法,这种方法主要是使用人工定义方法来给出人脸通用模板...这种方法存在不足之处在于能量函数在优化时十分复杂,消耗时间较长,并且能量函数各个加权系数都是靠经验值确定,在实际应用中有一定局限性。

    1.2K50
    领券