本文介绍一篇来自 ACMMM20 Oral 的论文,这篇论文主要通过构建一个 benchmark,并基于 benchmark 结果的深入分析,提出两个优化方法,提升现实场景下联邦学习在行人重识别上碰到的数据异构性问题。
近年来,随着监控摄像头的普及与应用,监控摄像头系统在打击罪犯和刑侦安全方面起到了至关重要的作用。利用监控系统查找犯罪嫌疑人,从而侦破案件已经成为公安机关的重要破案手段。这一重要应用使得行人重识别问题得到广泛关注。行人重识别是指给定行人在某一监控摄像头下的图片,利用计算机视觉算法在其余监控摄像头下识别出这一特定行人。
AI 科技评论消息,计算机视觉欧洲大会(European Conference on Computer Vision,ECCV)于 9 月 8 -14 日在德国慕尼黑召开,今天已进入会议第二日。会议前两日为 workshop 和 tutorial 预热环节,主会将于当地时间 9 月 10 日召开。
近期,中山大学发布了一种基于可微图学习的弱监督行人重识别(person re-ID)方法和一个大型数据集。该方法结合可微图学习和弱监督学习方法,为行人重识别深度神经网络加入自动生成训练标签的模块并与其一体训练。相比普通的行人重识别方法,该方法不需要高昂的人工标注成本,并且几乎不增加计算复杂度也能达到领先的模型性能。
行人重识别,又称行人再识别,是利用 CV 技术判断图像或视频序列中是否存在特定行人的技术。常规的行人重识别方法往往需要高昂的人工标注成本,计算复杂度也很大。在本文中,中山大学研究者提出的弱监督行人重识别方法恰恰克服了这两方面的障碍,并发布了一个大型行人重识别数据集。
来源:专知本文为课程介绍,建议阅读5分钟适合深度学习和行人重识别领域无基础的入门者学习。 该课程为浙江大学罗浩博士于2018年10月录制的《基于深度学习和行人重识别》网课视频,该课程首发于AI300学院。为了让更多人学习该课程,现免费在B站公开。由于该网课录制于2018年末,所以知识点已经有些陈旧,因此主要适合深度学习和行人重识别领域无基础的入门者学习,有基础者无需学习此课程。课程主要包括深度学习基础、行人重识别理论基础和行人重识别代码实践三个篇章。考虑到该课程免费开放以及作者工作较忙,所以日后很难有精力进
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
内容提要:行人重识别技术,广泛应用于智慧城市、自动驾驶等场景中,近年取得飞速发展。这也得益于训练数据规模的扩大、深度学习的发展。
最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。 总之,除了能在谷歌学术中搜到一些Person re-identification的学术论文外,其他的资料明显没有行人检测的多。 概念解释 “行人重(再)识别”,首先从字面上将就是对“行人”进行“识别”。其中的“重(再)”则是指“重新”、“再一次”的意思。 “行人重(再)识别”技术主要是应用在视频监控方面。在刑侦工作中
行人重识别(reID)是一项极具挑战性的任务,该任务以在多个摄像头拍摄出来的图像中识别相同行人为目标。随着深度学习方法的广泛使用,reID 的性能借助不同的算法得到快速提高。在用深度神经网络学习表征的问题上大家做了各种尝试,但姿势变化、图像模糊以及目标遮挡等问题仍对学习判别式特征提出了巨大的挑战。解决这些问题有两类方法,对齐行人图像 [1] 或通过学习身体区域的特征整合行人的姿势信息 [2]。但这些工作在推断阶段也需要辅助的姿势信息,这样就限制了算法在没有姿势信息的情况下泛化新图像的能力。与此同时,由于对姿势估计的推断更复杂了,计算成本也随之增加。
前几天英伟达开源了DG-Net的源码。让我们来回顾一下这篇CVPR19 Oral的论文。
本文选自BMVC2018的论文《Deep Association Learning for Unsupervised Video Person Re-identification》,使用无监督学习解决行人重识别的问题,更加贴近行人重识别的应用场景,同时性能也大幅提升。
近年来,行人重识别技术在业内得到了越来越多的关注,CVPR投稿中关于ReID的研究逐年增多。随着行人重识别技术的日渐成熟,其巨大的应用价值和市场潜力得到了越来越多的关注。
行人重识别(Person re-identification)也称行人再识别,被广泛认为是一个图像检索子问题,是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补目前固定摄像头的视觉极限,并可与行人检测、行人跟踪技术相结合,应用于视频监控、智能安防等领域。
本文为 2018 年 5 月 11 日在微软亚洲研究院进行的 CVPR 2018 中国论文宣讲研讨会中第三个 Session——「Person Re-Identification and Tracking」环节的四场论文报告。
这里分享下大佬(目前就职于大疆创新)的研究生期间的成长路线。虽然说没有适合每个人的方法,因为每个人的特点和所处的环境都不一样,但有个参考总是好的,所以我在这悄悄把自己研究生三年的经历写一下,前面可能会写的详细一点,希望能对这些同学有所帮助。
AI 科技评论按:本文首发于知乎行人重识别专栏,AI 科技评论获其作者郑哲东授权转载。 1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。类比于自然语言处理(nlp)的话,大家或者集中于语义层面的设计(比如设计 loss,triplet loss,identi+verif loss),或者集中于语法层面上(利用人体的内在结构,比如水平切割,pose预测)。 这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数
据外媒报道,谷歌及其母公司Alphabet首席执行官桑达尔·皮查伊(Sundar Pichai)日前亲自撰文,声称人工智能太过重要,必须受到监管,人们非常担心AI造成的潜在负面后果。公司不能仅仅建立新技术,而放任市场力量来决定如何使用它。(网易科技)
中国经济周刊-经济网讯 (记者 宋杰) 打造中国无人驾驶汽车测评的风向标,国内智能汽车比赛首次驶上专业赛道比赛。12月11日至13日,2017中国智能汽车大赛(CIVC)在上海F1国际赛车场和国家智能网联汽车(上海)试点示范区封闭测试区举行。本届大赛在工业和信息化部电子信息司、上海市经济和信息化委员会、嘉定区人民政府的指导下,由中国汽车技术研究中心、中国生产力促进中心协会、上海国际汽车城(集团)有限公司共同主办,中国汽车技术研究中心情报所、全国汽车行业生产力促进中心、国家智能网联汽车(上海)试点示范区共同承
行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。
论文 1:MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
行人搜索是图像搜索问题的第一个尝试。在此之前,虽然对人的检测和重识别做了大量的努力,但大多数都是独立处理这两个问题的。也就是说,传统方法将行人搜索任务划分为两个独立的子任务。
最近的研究表明,显式深度特征匹配以及大规模多样化的训练数据均可显著提升行人重识别的泛化能力。但是,在大规模数据上,学习深度匹配器的效率还未得到充分研究。 近日,特斯联科技集团首席科学家邵岭博士及团队提出了一种高效的小批量采样(mini-batch sampling)方法——图采样(Graph Sampling, GS),用于大规模深度度量学习,极大改善了可泛化行人重识别。目前,该研究成果(题为: Graph Sampling Based Deep Metric Learning for Generaliz
腾讯云成都机房上线,折扣价2M1G1H只需65.02元。之前站长朋友用的学生机,现在可以直接领新购券,新购一台成都的2M带宽的机器。 原来的linux硬盘只有20G,现在新购的机器都是50G,所以需要大存储的及时领取新购劵换机 活动说明: 购买本优惠套餐后,在学生认证有效期内,每月1日前可到本页面领取一次续费代金劵,继续享受优惠价格,若连续90天未到此页面领取代金券,将被认为主动放弃领取资格,不再提供优惠政策。若您希望长期享受优惠,请持续续费。拥有优惠资格的用户,活动期间只提供一次更换
1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。类比于自然语言处理(nlp)的话,大家或者集中于语义层面的设计(比如设计 loss,triplet loss,identi+verif loss),或者集中于语法层面上(利用人体的内在结构,比如水平切割,pose预测)。 这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。现有大数据集往往采用自动检测的方法,比如 DPM 来检测行人,把行
摘要:行人重识别(Person Re-Identification,简称Re-ID),是一种利用计算机视觉技术来检索图像或者视频序列中是否存在特定行人的AI技术,在智慧城市等监控场景中具有重要的应用意义和前景。本文介绍我们最新的IEEE TPAMI综述论文 《Deep Learning for Person Re-identification: A Survey and Outlook》,该文作者来自武汉大学、起源人工智能研究院(IIAI)、北理工、英国萨里大学、Salesforce亚洲研究院。
本文主要是介绍自己做的一个工作:SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identication(https://arxiv.org/abs/1807.00537),用了 Softmax 的变种,在行人重识别上取得了非常好的效果,并且端到端训练,网络结构简单。在 Market-1501 数据集上达到 94.4% 的准确率(并且不需要 re-ranking 和 fine-tuning)。
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
本文作者为悉尼科技大学博士生武宇(Yu Wu),他根据 CVPR 2018 录用论文 Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning 为 AI 科技评论撰写了独家解读稿件。
顶会AAAI 2022的惨烈程度,各位投稿人一定心有体会,近万篇投稿只有15%的录取率,无数全positive的优秀工作被录取率卡掉。
【导读】目前,大多数行人重识别(ReID)方法主要是从收集的单个人图像数据库中检索感兴趣的人。在跨摄像头的监控应用中,除了单人ReID任务外,匹配一组行人(多个人)也起着重要的作用。这种组重识别(GReID)的任务非常具有挑战性,因为它不仅面临着单个人外观的变化,还有组的布局和成员身份变化也会带来更多困难。为了获得组图像的鲁棒表示,本文设计了一种域迁移图神经网络(DoT-GNN)方法。
论文名称:Rotation-invariant Mixed Graphical Model Network for 2D Hand Pose Estimation
腾讯云成都机房上线,折扣价2M1G1H只需65.02元。之前站长朋友用的学生机,现在可以直接领新购券,新购一台成都的2M带宽的机器。
对于这个问题,业界似乎早已有了共识。从 AI 的人脸识别能力超越人类以来,学术界和产业界的目光逐渐转向另一个更具科研意义和应用价值的课题——行人重识别(Person Re-identification,ReID)。
论文名称:Sketch Less for More: On-the-Fly Fine-Grained Sketch Based Image Retrieval
行人重识别(Person ReID)在安全部署领域有着广泛应用,当前的研究仅考虑ReID模型在干净数据集上的性能,而忽略了ReID模型在各种图像损坏场景(雨天、雾天等)下的鲁棒性。
今天跟大家分享一份ICCV 2019 上新出的关于注意力模型的工作Mixed High-Order Attention Network for Person Re-Identification,来自北京邮电大学的学者提出一种高阶注意力模型,并将其应用于行人重识别建模,显著改进了现有SOTA模型的精度。
AI 科技评论按:本文为浙江大学罗浩为 AI 科技评论撰写的独家稿件,得到了作者本人指点和审核,在此表示感谢。 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。 在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技
随着“双十一”临近,情理之中的电商大战火药味越来越浓,鸡鸭同池,老板娘上头条,话题一个接一个。小编想说的是,求求你们!别老整这些没用的,倒是打价格战啊!红包现金券砸过来吧,多多益善~ 11月15日,DNSPOD将迎来6周岁生日,回馈用户是我们每年周年庆不变的主题,咱们不整那些虚的,11月12日起,全线产品0元购,7天24小时嗨购不停。 活动一:0元购,10点抢。 域名注册,CDN流量包,解析套餐,云主机全部免费,每天10点,准时相约。 活动二:百万券,任性派。 10元,20元无门槛现金券,100元,3
谈到人工智能,大众最耳熟能详的当属人脸识别技术,它已经渗透到了我们生活的方方面面。但在计算机视觉领域,另一项技术的重要性也不遑多让,那就是行人重识别(ReID)技术。
行人重识别近几年获得了在测试结果上的大幅提升,甚至超过了人的分辨能力,但是我们在实际应用上仍有很多待解决的问题。在本文中,我们take a step back, 提出了一些问题和潜在的解决方案,主要以我们reler组的尝试为主,包括大家比较熟知的 PCB / HHL/ PUL/ SPGAN/ DG-Net等工作,抛砖引玉。 希望能为未来这个领域的发展提供一些新的视野。
论文题目:Video-based Person Re-identification with Spatial and Temporal Memory Networks
来了?鹅厂小编们等你很久了!咱们闲话少叙,今天,10位小编携手为你奉上10份超级大礼: 书籍、技术教程、鹅厂公仔、腾讯云代金券……每位朋友都可以免!费!参与抽奖! 01 技术书籍 本次奖池涵盖数据分析、人工智能、编程等多个领域。一份技术人获益的典藏书单,强烈推荐,借助书籍希望大家能够由浅入深、循序渐进的学习新知,事半功倍,少走弯路。赠送书单明细请翻至文末查看哦~ 02 实战教程 鹅厂资深数据库专家录制的数据库实战视频课程,教你从青铜到王者学习数据库;小程序云开发教程,含源码,教你7天打造流量过亿的小程序,
由中国图象图形学学会和腾讯高校合作主办、中国图象图形学学会视觉大数据专委会承办的“ECCV 2018 China Pre-Conference论文宣讲研讨会”于7月30日在深圳腾讯大厦顺利举办。150余位来自学界、工业界的研究人员参与了本次研讨会。会议日程包含12篇论文口头报告,20篇论文海报展示,并邀请到多位业界专家开展题为“计算机视觉的今天与明天,城内与城外”的圆桌论坛,分享各自在计算机视觉领域的最新研究结果和相关技术观点。 论文口头报告-12篇 哈尔滨工业大学(深圳)张正博士带来题为“Highly-E
本文介绍了多模态人物识别和跨模态人物检索的任务定义、研究现状、技术方法、系统实现和典型应用场景。多模态人物识别和跨模态人物检索是当前计算机视觉和人工智能领域的研究热点,其应用场景非常广泛,包括安防监控、人员管理、智能零售等。
本文介绍一篇由港中文发表于ICLR-2020的论文《Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification》[1],其旨在解决更实际的开放集无监督领域自适应问题,所谓开放集指预先无法获知目标域所含的类别。这项工作在多个行人重识别任务上验证其有效性,精度显著地超过最先进技术13%-18%,大幅度逼近有监督学习性能。这也是ICLR收录的第一篇行人重识别任务相关的论文,代码和模型均已公开。
论文地址:https://arxiv.org/pdf/2102.04378.pdf
领取专属 10元无门槛券
手把手带您无忧上云