首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于蚁群算法的机械臂打孔路径规划

问题描述   该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。 数学模型建立 问题分析   机械臂打孔生产效能主要取决于以下三个方面: 单个孔的钻孔作业时间,这是由生产工艺所决定的,不在优化范围内,本文假定对于同一孔型钻孔的作业时间是相同的。 打孔机在加工作业时,钻头的行进时间。 针对不同孔型加工作业时间,刀具的转换时间。   在机

08
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    各种智能优化算法比较与实现(matlab版)

    免疫算法是受生物免疫系统的启发而推出的一种新型的智能搜索算法。它是一种确定性和随机性选择相结合并具有“勘探”与“开采”能力的启发式随机搜索算法。免疫算法将优化问题中待优化的问题对应免疫应答中的抗原,可行解对应抗体(B细胞),可行解质量对应免疫细胞与抗原的亲和度。如此则可以将优化问题的寻优过程与生物免疫系统识别抗原并实现抗体进化的过程对应起来,将生物免疫应答中的进化过程抽象成数学上的进化寻优过程,形成一种智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。相对于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)的不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。 1.2 算法操作步骤 (1)首先进行抗原识别,即理解待优化的问题,对问题进行可行性分析,提取先验知识,构造出合适的亲和度函数,并制定各种约束条件。 (2)然后初始化抗体群,通过编码把问题的可行解表示成解空间中的抗体,在解的空间内随机产生一个初始种群。 (3)对种群中的每一个可行解进行亲和度评价。(记忆单元的更新:将与抗原亲和性高的抗体加入到记忆单元,并用新加入的抗体取代与其亲和性最高的原有抗体(抗体和抗体的亲和性计算)) (4)判断是否满足算法终止条件;如果满足条件则终止算法寻优过程,输出计算结果;否则继续寻优运算。 (5)计算抗体浓度和激励度。(促进和抑制抗体的产生:计算每个抗体的期望值,抑制期望值低于阈值的抗体;可以知道与抗原间具有的亲和力越高,该抗体的克隆数目越高,其变异率也越低) (6)进行免疫处理,包括免疫选择、克隆、变异和克隆抑制。 免疫选择:根据种群中抗体的亲和度和浓度计算结果选择优质抗体,使其活化; 克隆:对活化的抗体进行克隆复制,得到若干副本; 变异:对克隆得到的副本进行变异操作,使其发生亲和度突变; 克隆抑制:对变异结果进行再选择,抑制亲和度低的抗体,保留亲和度高的变异结果。 (7)种群刷新,以随机生成的新抗体替代种群中激励度较低的抗体,形成新一代抗体,转步骤(3)。 免疫算法运算流程图

    02

    人工智能:智能优化算法

    优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域。优化方法是一种以数学为基础,用于求解各种优化问题的应用技术。各种优化方法在上述领域得到了广泛应用,并且已经产生了巨大的经济效益和社会效益。实践证明,通过优化方法,能够提高系统效率,降低能耗,合理地利用资源,并且随着处理对象规模的增加,这种效果也会更加明显。 在电子、通信、计算机、自动化、机器人、经济学和管理学等众多学科中,不断地出现了许多复杂的组合优化问题。面对这些大型的优化问题,传统的优化方法(如牛顿法、单纯形法等)需要遍历整个搜索空间,无法在短时间内完成搜索,且容易产生搜索的“组合爆炸”。例如,许多工程优化问题,往往需要在复杂而庞大的搜索空间中寻找最优解或者准最优解。鉴于实际工程问题的复杂性、非线性、约束性以及建模困难等诸多特点,寻求高效的优化算法已成为相关学科的主要研究内容之一。 受到人类智能、生物群体社会性或自然现象规律的启发,人们发明了很多智能优化算法来解决上述复杂优化问题,主要包括:模仿自然界生物进化机制的遗传算法;通过群体内个体间的合作与竞争来优化搜索的差分进化算法;模拟生物免疫系统学习和认知功能的免疫算法;模拟蚂蚁集体寻径行为的蚁群算法;模拟鸟群和鱼群群体行为的粒子群算法;源于固体物质退火过程的模拟退火算法;模拟人类智力记忆过程的禁忌搜索算法;模拟动物神经网络行为特征的神经网络算法;等等。这些算法有个共同点,即都是通过模拟或揭示某些自然界的现象和过程或生物群体的智能行为而得到发展;在优化领域称它们为智能优化算法,它们具有简单、通用、便于并行处理等特点。 **

    01

    Design and Implementation of Global Path Planning System for Unmanned Surface Vehicle among Multiple

    针对多任务点的全局路径规划,是指在存在静态障碍物的环境中,给定水面无人艇起始点、目标点以及多个任务点的情况下,设计从起始点出发,安全地遍历各个任务点,最终返回目标点的全局路径,要求行驶的航路代价总和最小。   本文主要解决水面无人艇在对多个任务点进行全局路径规划时的设计和实现算方法,相关研究和设计已在 International Journal of Vehicle Autonomous Systems (IJVAS) EI期刊发表。附InderScience Publiers - IJVAS的官方文献下载链接 Design and Implementation of Global Path Planning System for Unmanned Surface Vehicle among Multiple Task Points,以及arXiv的下载链接。官方文献下载链接需要科学上网才可以打开。   本文主要讨论论文的实现原理,并给出部分程序源代码,方便后来者研究和参考。

    00

    一文详述蚁群算法

    前几篇解释了一些智能优化算法,今天才想到还有一个重要的给忘了,,言归正传,蚁群算法也是一种生物仿生算法,它是通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法。自然界常理,蚂蚁可以通过群体行动在没有任何提示下从家找到食物源的最短路径,并能随着环境变化不断调整适应性地搜索出新的路径产生新的选择使得找到的路径最短。一般来说每个蚂蚁可以看成是独立的个体,相互交流的纽带是通过释放分泌信息素来实现的,所以这也是该算法模拟的核心地方,根据信息素的浓度进行下一个最优移动方向的选择,从而做到周游所有地点的最短路径,具体过程下面详述

    02

    数学建模竞赛(国赛和美赛)经验分享

    第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚组队,我们也没有什么基础,结果可想而知:无奖。 在经历了这一次国赛之后,大一时的两位队友也无心再参加,所以又重新找了两位队友。从此我们队伍成员便确认了下来。这两位分别是一名女生负责排版,一名男生负责建模;而我负责写程序。我们一起准备第二年的国赛,在这期间,我们学校决定自己组织一次建模比赛为国赛做铺垫。我们为了检验自己的学习成果,便参加了。凭借着很好的运气,我们拿了二等奖的好成绩。 时间不久,便到了国赛。在国赛期间,我们每天熬夜熬到很晚,有了一点想法之后就开始讨论,然后发现行不通,又开始讨论,再进行完善……就这么一直反反复复着。直到提交了论文的最后# 在找队友的时候,一定要找靠谱的,自己熟悉的,千万不要临时组队。在准备竞赛这段时间,要经常沟通,彼此磨合,培养默契。 在参加竞赛的时候,不免会讨论得过于激烈,千万不要烦彼此,因为只有交流彼此得思想才会进行碰撞,才有可能找到适合本队得解题办法。 在分工方面,建议有一个人主要负责建模,一个主要负责编程,一个主要负责写论文和排版。三个人对建模、编程、排版都要了解,因为不知竞赛得的时候会有谁的工作量大一些,另外的人还可以去帮忙。三样都懂一些也可以更好的交流,更好的完成作品。

    04
    领券