尺寸段和值的列表通常是指在数据处理或统计分析中对连续数值进行分组后得到的区间范围及其对应值的集合。这在数据可视化、报表统计、数据分析等领域非常常见。
-- 等宽分段示例
SELECT
FLOOR(price/10)*10 AS price_range_start,
FLOOR(price/10)*10+10 AS price_range_end,
COUNT(*) AS count
FROM products
GROUP BY FLOOR(price/10)
ORDER BY price_range_start;
-- 自定义分段示例
SELECT
CASE
WHEN price < 50 THEN '0-50'
WHEN price < 100 THEN '50-100'
WHEN price < 200 THEN '100-200'
ELSE '200+'
END AS price_range,
COUNT(*) AS count
FROM products
GROUP BY price_range
ORDER BY price_range;
import pandas as pd
import numpy as np
# 示例数据
data = {'value': np.random.randint(0, 1000, 1000)}
df = pd.DataFrame(data)
# 等宽分段
bins = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
labels = ['0-100', '100-200', '200-300', '300-400', '400-500',
'500-600', '600-700', '700-800', '800-900', '900-1000']
df['range'] = pd.cut(df['value'], bins=bins, labels=labels)
result = df.groupby('range').size().reset_index(name='count')
print(result)
# 等频分段(四分位数示例)
df['range'] = pd.qcut(df['value'], q=4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
result = df.groupby('range').size().reset_index(name='count')
print(result)
// 示例数据
const data = Array.from({length: 100}, () => Math.floor(Math.random() * 1000));
// 等宽分段
const binSize = 100;
const bins = {};
data.forEach(value => {
const bin = Math.floor(value / binSize) * binSize;
const key = `${bin}-${bin + binSize}`;
bins[key] = (bins[key] || 0) + 1;
});
console.log(bins);
// 自定义分段
const customBins = {
'0-100': 0,
'100-200': 0,
'200-500': 0,
'500+': 0
};
data.forEach(value => {
if (value < 100) customBins['0-100']++;
else if (value < 200) customBins['100-200']++;
else if (value < 500) customBins['200-500']++;
else customBins['500+']++;
});
console.log(customBins);
没有搜到相关的文章