首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

获取不同模型实例的用户输入评分平均值(Django)

获取不同模型实例的用户输入评分平均值是一个常见的需求,可以通过以下步骤实现:

  1. 首先,需要定义一个模型来存储用户的评分数据。可以使用Django的模型类来创建一个评分模型,包括用户ID、模型实例ID和评分值等字段。
代码语言:txt
复制
from django.db import models

class Rating(models.Model):
    user_id = models.IntegerField()
    instance_id = models.IntegerField()
    score = models.FloatField()
  1. 接下来,可以编写一个视图函数来计算不同模型实例的用户输入评分平均值。首先,需要根据模型实例ID进行分组,并计算每个分组的评分平均值。
代码语言:txt
复制
from django.db.models import Avg

def get_average_rating(request):
    average_ratings = Rating.objects.values('instance_id').annotate(avg_score=Avg('score'))
    return JsonResponse({'average_ratings': list(average_ratings)})
  1. 在视图函数中,使用values方法指定需要返回的字段,使用annotate方法进行分组和计算平均值。最后,将结果以JSON格式返回给前端。
  2. 在应用的URL配置中,将该视图函数映射到一个URL路径上。
代码语言:txt
复制
from django.urls import path

urlpatterns = [
    path('average-rating/', get_average_rating, name='average-rating'),
]

这样,当用户访问/average-rating/路径时,将会返回不同模型实例的用户输入评分平均值。

推荐的腾讯云相关产品:腾讯云服务器(CVM)、腾讯云数据库(TencentDB)、腾讯云人工智能(AI Lab)等。你可以在腾讯云官网上找到更详细的产品介绍和文档。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 超越ToT,苏黎世理工发布新一代思维图GoT:推理质量提升62%,成本降低31%

    论文链接:https://arxiv.org/pdf/2308.09687.pdf GoT的关键思想和主要优势在于将LLM生成的信息建模为图(arbitary graph),其中信息单元(思维,LLM thoughts)作为图的顶点,顶点之间的依赖关系作为图的边。 GoT方法可以将任意的LLM思维组合成协同结果,提取出整个思维网络的本质,或者使用反馈回路来增强思维。 通过实验可以证明GoT在不同任务上提供了优于现有技术的优势,例如,与ToT相比,排序任务的质量提高了62%,同时成本降低了31% 研究人员认为,GoT方法可以让LLM推理更接近人类的思维和大脑推理机制,比如二者都在内部形成了复杂的网络结构。 LLM思维(thought)的进化之路 用户与LLM对话的过程主要包括用户消息(提示,prompts)和模型回复(思维、想法,thoughts),其中回复可以是一段文本(摘要任务)、一个文档(生成任务)或是一个代码块等。 为了充分激活语言模型的能力,通常会采用各种提示方法:

    04

    机器学习:异常检测和推荐系统

    在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection) 问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。什么是异常检测呢?为了解释这个概念,让我举一个例子吧: 假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振动等等。这样一来,你就有了一个数据集,你将这些数据绘制成图表,如下图。

    02

    Nature子刊:用于阿尔茨海默病痴呆评估的多模态深度学习模型

    在全球范围内,每年有近1000万新发痴呆病例,其中阿尔茨海默病(AD)最为常见。需要新的措施来改善对各种病因导致认知障碍的个体的诊断。作者报告了一个深度学习框架,该框架以连续方式完成多个诊断步骤,以识别具有正常认知(NC)、轻度认知障碍(MCI)、AD和非AD痴呆(nADD)的人。作者展示了一系列能够接受常规收集的临床信息的灵活组合的模型,包括人口统计、病史、神经心理学测试、神经影像学和功能评估。然后,作者表明这些框架与执业神经科医生和神经放射科医生的诊断准确性相比具有优势。最后,作者在计算机视觉中应用可解释性方法,以表明模型检测到的疾病特异性模式可以跟踪整个大脑的退行性变化的不同模式,并与尸检时神经病理学病变的存在密切相关。作者的工作证明了使用既定的医学诊断标准验证计算预测的方法。

    03

    特征工程系列学习(一)简单数字的奇淫技巧(下)

    让我们看看在监督学习中对数转换如何执行。我们将使用上面的两个数据集。对于 Yelp 评论数据集, 我们将使用评论的数量来预测商户的平均评级。对于 Mashable 的新闻文章, 我们将使用文章中的字数来预测其流行程度。由于输出是连续的数字, 我们将使用简单的线性回归作为模型。我们在没有对数变换和有对数变换的特色上,使用 Scikit Learn 执行10折交叉验证的线性回归。模型由 R 方评分来评估, 它测量训练后的回归模型预测新数据的良好程度。好的模型有较高的 R 方分数。一个完美的模型得到最高分1。分数可以是负的, 一个坏的模型可以得到一个任意低的负评分。通过交叉验证, 我们不仅得到了分数的估计, 还获得了方差, 这有助于我们判断两种模型之间的差异是否有意义。

    02
    领券