传统的自动编码器是一种数据的压缩算法 其算法包括编码阶段和解码阶段,且拥有对称的结构。
自编码器是神经网络的一种,是一种无监督学习方法,使用了反向传播算法,目标是使输出=输入。 自编码器内部有隐藏层 ,可以产生编码表示输入。1986 年Rumelhart 提出。
文中的链接请点击网址:http://yerevann.com/a-guide-to-deep-learning/ 预备知识 你必须有大学数学知识。你可以在深度学习这本书的前几章中回顾这些概念: 深度学
通过训练具有小型中心层的多层神经网络重构高维输入向量,可以将高维数据转换为低维代码。这种神经网络被命名为自编码器_Autoencoder_。
自编码器(Autoencoder, AE)是一种数据的压缩算法,其中压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。自编码器通常用于学习高效的编码,在神经网络的形式下,自编码器可以用于降维和特征学习。
选自Medium 机器之心编译 参与:Nurhachu Null、蒋思源 本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低
选自GitHub 机器之心编译 参与:路雪、李泽南 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。本文中,作者在 MNIST 上对这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/Generative-Models 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经有了数百万张图像
来源:机器之心 本文长度为1876字,建议阅读4分钟 本文介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。 然后,网络会使用被编码的低维数据去尝试重建输入,这部分网络称之为解码器。我们可以使用编码器将数据压缩为神经网络可以理解的类型。然而自编码器很少用做这个目的
无监督学习作为机器学习的一个重要分支,在自动化处理领域中扮演着越来越重要的角色。它不需要外部的标签信息,能够从数据本身发现模式和结构,为自动化系统提供了强大的自适应和学习能力。本文将探讨无监督学习技术的基本原理、在自动化处理中的应用案例、面临的挑战以及未来的发展方向。
本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 全部 VAE 代码:https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb 自编码器是一种能够用来学习对输入数据高效编码的神经网络。若给定一些输入,神经网络首先会使用一系列的变换来将数据映射到低维空间,这部分神经网络就被称为编码器。 然后,网络会使用被编码的低维数据去
来源:机器之心 本文长度为3071字,建议阅读6分钟 本文在 MNIST 上对VAE和GAN这两类生成模型的性能进行了对比测试。 项目链接:https://github.com/kvmanohar22/ Generative-Models 变分自编码器(VAE)与生成对抗网络(GAN)是复杂分布上无监督学习最具前景的两类方法。 本项目总结了使用变分自编码器(Variational Autoencode,VAE)和生成对抗网络(GAN)对给定数据分布进行建模,并且对比了这些模型的性能。你可能会问:我们已经
深度学习中的自编码器。图源:https://debuggercafe.com/autoencoders-in-deep-learning/
最近在看GNN的一篇综述,里面有提到图自编码器,因此在这里推送一期关于自编码器的知识。
无监督学习的目标之一是不依靠显式的标注得到数据集的内在结构。自编码器是一种用于达成该目标的常见结构,它学习如何将数据点映射到隐编码中——利用它以最小的信息损失来恢复数据。通常情况下,隐编码的维度小于数据的维度,这表明自编码器可以实施某种降维。对于某些特定的结构,隐编码可以揭示数据集产生差异的关键因素,这使得这些模型能够用于表征学习 [7,15]。过去,它们还被用于预训练其它网络:先在无标注的数据上训练它们,之后将它们叠加起来初始化深层网络 [1,41]。最近的研究表明,通过对隐藏空间施加先验能使自编码器用于概率建模或生成模型建模 [18,25,31]。
【导读】自编码器可以认为是一种数据压缩算法,或特征提取算法。本文作者Nathan Hubens 介绍了autoencoders的基本体系结构。首先介绍了编码器和解码器的概念,然后就“自编码器可以做什么
写在前面:看预测论文综述时,面临这样一个问题:很多DL的方法只是会简单运用,却不是特别了解其详细原理,故针对CNN、RNN、LSTM、AutoEncoder、RBM、DBN以及DBM分别做一些简单总结,以达到了解的目的,此篇为AutoEncoder。
自编码器是一种能够通过无监督学习,学到输入数据高效表示的人工神经网络。输入数据的这一高效表示称为编码(codings),其维度一般远小于输入数据,使得自编码器可用于降维(查看第八章)。更重要的是,自编码器可作为强大的特征检测器(feature detectors),应用于深度神经网络的预训练(查看第十一章)。此外,自编码器还可以随机生成与训练数据类似的数据,这被称作生成模型(generative model)。比如,可以用人脸图片训练一个自编码器,它可以生成新的图片。
自编码器(Autoencoder,AE),是一种利用反向传播算法使得输出值等于输入值的神经网络,它先将输入压缩成潜在空间表征,然后通过这种表征来重构输出。 自编码器由两部分组成: 编码器:这部分能将输
有些同学在刚开始看论文的时候,经常会遇到编码器、解码器、自编码器(AutoEncoder)这些字眼,它们到底是干什么的呢?其主要作用又是什么呢?那么本篇主要带大家了解自编码器(AutoEncoder)。
自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输
自编码器(Autoencoder)是一种无监督学习算法,广泛应用于数据的表示学习和降维。自编码器通过将输入数据压缩为低维编码,然后再将其重新构建为与原始数据尽可能相似的输出。本文将详细探讨自编码器在无监督学习和降维中的应用。
本篇文章可作为<利用变分自编码器实现深度换脸(DeepFake)>(稍后放出)的知识铺垫。
深度学习算法(第30期)----降噪自编码器和稀疏自编码器及其实现 今天我们一起学一下变分自编码器及其实现方面的知识。
在机器学习领域中,自编码器(Autoencoder)是一种强大的神经网络架构,用于数据降维和特征提取。自编码器通过训练过程将输入数据映射到低维编码空间,然后再将其重构为原始数据。本文将深入探讨自编码器的原理、应用以及代码示例,帮助读者理解其在数据处理中的重要性。
神经网络从根本上是有监督的——它们接受一组输入,执行一系列复杂的矩阵操作,并返回一组输出。随着世界产生越来越多的无监督数据,简单和标准的无监督算法已经不够用了。我们需要以某种方式将神经网络的深层力量应用于无监督的数据。
深度学习算法(第27期)----栈式自编码器 今天我们一起学一下如何高效的训练自编码器。
作者:Adam R. Kosiorek、Sara Sabour、Yee Whye Teh、Geoffrey E. Hinton
自编码器是能够在无监督的情况下学习输入数据的有效表示(叫做编码)的人工神经网络(即,训练集是未标记)。这些编码通常具有比输入数据低得多的维度,使得自编码器对降维有用(参见第 8 章)。更重要的是,自编码器可以作为强大的特征检测器,它们可以用于无监督的深度神经网络预训练(正如我们在第 11 章中讨论过的)。最后,他们能够随机生成与训练数据非常相似的新数据;这被称为生成模型。例如,您可以在脸部图片上训练自编码器,然后可以生成新脸部。
【新智元导读】这份指南适合有一些数学基础,了解一些编程语言,现在想深入学习深度学习的人。主要包括2个视频教程,2部重要专著,一系列深入浅出的博客文章,以及一系列实现算法的指南和代码,堪称年度最有价值深度学习资料! 深度学习是计算机科学和数学交叉的一个快速变化的领域,属于机器学习的一个相对较新的分支。机器学习的目的是教计算机根据给定的数据执行各种任务。这份指南的目标读者是已有一些数学基础,了解一些编程语言,现在想深入学习深度学习的人。 这份完全指南主要包括2个视频教程,2部重要专著,以及一系列深入浅出的博客文
原文标题:Understanding Variational Autoencoders (VAEs)
第15章 自编码器 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@akonwang 校对:@飞龙 自编码器是能够在无监督的情况下学习输入数据(叫做编码)的人工神经网络(即,训练集是未标记)。这些编码通常具有比输入数据低得多的维度,使得自编码器对降维有用(参见第 8 章)。更重要的是,自编码器可以作为强大的特征检测器,它们可以用于无监督的深度神经网络预训练(正如我们在第 11 章中讨论过的)。最后,他们能够随机生成与训练数据非常相似的新数据;这
无监督学习(Unsupervised Learning)是一类机器学习任务,其中算法在没有标签的情况下,从未标记的数据中学习模式和结构。与有监督学习不同,无监督学习不依赖于预定义的输出,而是从数据本身提取信息,用于发现数据的内在规律和特征。
原文链接:http://www.chenjianqu.com/show-62.html
DanceNet 中最主要的三个模块是变分自编码器、LSTM 与 MDN。其中变分自编码器(VAE)是最常见的生成模型之一,它能以无监督的方式学习复杂的分布,因此常被用来生成图像数据。VAE 非常优秀的属性是可以使用深度神经网络和随机梯度下降进行训练,并且中间的隐藏编码还表示了图像的某些属性。
说到计算机生成的图像肯定就会想到deep fake:将马变成的斑马或者生成一个不存在的猫。在图像生成方面GAN似乎成为了主流,但是尽管这些模型在生成逼真的图像方面取得了巨大成功,但他们的缺陷也是十分明显的,而且并不是生成图像的全部。自编码器(autoencoder)作为生成的图像的传统模型还没有过时并且还在发展,所以不要忘掉自编码器!
选自Medium 作者:Artem Oppermann 机器之心编译 参与:白妤昕、李泽南 深度自编码器(Deep Autoencoder)由两个对称的深度信念网络组成,它相比常见的自编码器加入了更多隐藏层。在本文中,作者将尝试使用该工具进行协同过滤,帮助人们研究和预测大量用户对于不同电影的喜好。 推荐系统使用协同过滤的方法,通过收集用户的偏好信息来预测特定用户的兴趣。协同过滤技术的基本假设是,如果用户 A 对某个问题与人 B 有相同的口味或意见,那么 A 就更有可能在其他问题上拥有与 B 的相同的意见。
来源:机器学习算法与Python实战 本文约1200字,建议阅读5分钟 本文对现有的深度聚类算法进行全面综述与总结。 这篇博客对现有的深度聚类算法进行全面综述与总结。现有的深度聚类算法大都由聚类损失与网络损失两部分构成,博客从两个视角总结现有的深度聚类算法,即聚类模型与神经网络模型。 1. 什么是深度聚类? 经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。为了解决改问题,深度聚类的概念被提出,即联合优化表示学习和聚类。
简而言之,自动编码器通过接收数据、压缩和编码数据,然后从编码表示中重构数据来进行操作。对模型进行训练,直到损失最小化并且尽可能接近地再现数据。通过这个过程,自动编码器可以学习数据的重要特征。
(第二部分:深度学习) 第10章 使用Keras搭建人工神经网络 第11章 训练深度神经网络 第12章 使用TensorFlow自定义模型并训练 第13章 使用TensorFlow加载和预处理数据 第14章 使用卷积神经网络实现深度计算机视觉 第15章 使用RNN和CNN处理序列 第16章 使用RNN和注意力机制进行自然语言处理 第17章 使用自编码器和GAN做表征学习和生成式学习 [第18章 强化学习] [第19章 规模化训练和部署TensorFlow模型]
【导读】自编码器是一种非常直观的无监督神经网络方法,由编码器和解码器两部分构成,自编码器近年来很受研究人员的欢迎。本文是机器学习工程师Jeremy撰写的一篇非常棒的博文,介绍了变分自编码器理论基础和工作原理,通过人脸示例帮助读者更直观的理解。本文强调了变分自编码器的理论推导和实现细节,在文末展示了变分自编码器作为生成模型的输出结果。希望深入理解变分自编码器的读者不妨读一读。 Variational autoencoders 变分自编码器 自编码器是发现数据的一些隐状态(不完整,稀疏,去噪,收缩)表示的模型
推荐系统使用协同过滤的方法,通过收集用户的偏好信息来预测特定用户的兴趣。协同过滤技术的基本假设是,如果用户 A 对某个问题与人 B 有相同的口味或意见,那么 A 就更有可能在其他问题上拥有与 B 的相同的意见。
深度学习算法(第28期)----如何高效的训练自编码器? 今天我们一起学一下自编码器中相关的可视化方面以及无监督预训练方面的知识。
AiTechYun 编辑:yuxiangyu 自编码器是一种无监督学习技术,利用神经网络进行表征学习。也就是说,我们设计一个在网络中施加“瓶颈”,迫使原始输入压缩知识表示的神经网络架构。如果输入特征彼
自编码器是在无监督(训练集未标注)的情况下,能够学习有效表示数据(称为编码)的一种深度人工网络。这些编码一般跟输入数据比起来有更低的维度,这使得自编码器在数据降维方面比较有用。更重要的是,自编码器可以作为强大的特征检测器,它可以在深度网络中用于无监督的预训练。最后,它可以随机产生和训练数据相似的新数据,这叫做生成模型。例如,我们可以训练一个人脸图像上的自编码器,那么它能够产生新的人脸图像。
深度学习算法(第25期)----机器翻译中的编码解码器网络 今天我们一起学一下深度网络中的自编码器.
11 月 12 日,一篇由 Facebook AI 研究院完成、何恺明一作的论文《Masked Autoencoders Are Scalable Vision Learners》成为了计算机视觉圈的热门话题。
随着生成型AI技术的能力提升,越来越多的注意力放在了通过AI模型提升研发效率上。业内比较火的AI模型有很多,比如画图神器Midjourney、用途多样的Stable Diffusion,以及OpenAI此前刚刚迭代的DALL-E 2。
自编码器是一种无监督方法,它通过同时学习编码器-生成器图将「生成性」和「表征性」结合起来。关于自编码器有两个疑问尚未得到解决:
VAE变分自编码器方法是优雅的,理论上令人愉快的,并且易于实现。它也获得了出色的结果,是生成式建模中的最先进方法之一。变分自编码器的一个非常好的特性是,同时训练参数编码器与生成器网络的组合迫使模型学习编码器可以捕获可预测的坐标系。这使得它成为一个优秀的流形学习算法。
领取专属 10元无门槛券
手把手带您无忧上云