PDF报告全文下载,请关注公众号并回复:20180917 2.算法的分类归纳:回归、分类和聚类 回归是一种用于连续型数值变量预测和建模的监督学习算法。...分类算法用于分类变量建模及预测的监督学习算法,分类算法往往适用于类别(或其可能性)的预测。...3.新算法简述:胶囊网络、生成式对抗网络、迁移学习 胶囊网络:受到神经科学的启发,人工智能领军人物 Hinton 提出了胶囊网络的概念。...胶囊网络由胶囊而不是由神经元构成,胶囊由一小群神经元组成,输出为向量,向量的长度表示物体存在的估计概率,向量的方向表示物体的姿态参数。理论上更接近人脑的行为。...迁移学习可大大降低深度网络训练所需的数据量,缩短训练时间。
,来自清华大学和旷视的研究者提出了专用于目标检测的骨干网络 DetNet。...它们都是基于在 ImageNet 分类任务上预训练的骨干网络。然而,图像分类和目标检测问题之间有一个显著的区别,后者不仅仅需要识别目标实例的类别,还需要对边界框进行空间定位。...和传统的利用在 ImageNet 分类任务上预训练的模型不同,即使包含了额外的阶段,DetNet 也能保持特征的空间分辨率。...研究者使用 ResNet-50 作为基线模型,其作为骨干网络广泛用于大量目标检测器中。...而很少有研究探讨用骨干特征提取器专门做目标检测。
现今,这些计算机视觉任务都需要不同的卷积神经网络架构,如用于分类的ResNet架构,用于目标检测的YOLO架构,用于语义分析的掩模R-CNN架构,等等。图像由AurélienGéron提供。...是的,我们已经看到了令人难以置信的CNNs,但是: 这些CNNs都接受了数量巨大图像的训练(或重复使用了部分已训练过的神经网络)。CapsNets能通过少得多的训练数据就可很好地完成网络训练。...运用CapsNets,详细的姿态信息(如精确的目标位置、旋转、厚度、歪斜、大小等等)在整个网络中都被保留,而不是丢失而后被恢复过来。输入的微小变化会导致输出的细微变化——信息却被保留。...简而言之,CapsNet由胶囊而不是神经元组成。...图4 两层胶囊网络。这个例子中,初始胶囊层有两个5×5映射,而第二个胶囊层有两个3×3映射。
由于深度学习近期取得的进展,手写字符识别任务对一些主流语言来说已然不是什么难题了。但是对于一些训练样本较少的非主流语言来说,这仍是一个挑战性问题。...CNN 的训练需要大量训练样本(一般每一类需要数千或数万个样本)才能成功地对图像分类。因此人们对用少量训练样本训练成功的 CNN 有着浓厚兴趣。...这是因为这样的语言难以获得大量标注数据,而深度学习还无法通过少量训练样本正确学习。 为了解决这个问题,我们引入了一种根据现有样本生成新训练样本的技术。...用胶囊网络进行字符识别 我们提出了一种由胶囊网络和解码器网络组成且针对字符识别任务的架构,如图 1 和图 2 所示。 ? 图 1:TextCap 模型:用于字符分类的 CapsNet 模型。 ?...图 2:TextCap 解码器:用于字符重建的解码器网络。通过屏蔽 TextCap 分类器的 DigitCaps 层来获得网络的输入。
一系列实验表明,一些被认为对胶囊网络(CapsNet)至关重要的设计组件实际上会损害它的鲁棒性,而另一些设计则有利于 CapsNet 的鲁棒性。 卷积神经网络取得了很大的成功,也很受欢迎。...因此,Hinton 和他的同事们提出了胶囊网络 (CapsNet) 作为 CNN 模型的替代。胶囊具有等变性并且输入输出都是向量形式的神经元而不是 CNN 模型中的标量值。...边际损失(margin loss)会略微削弱 CapsNet 的变换鲁棒性,而重构对其没有影响。而非条件重构方法在每次训练迭代中更新所有的胶囊,因此性能略有提高。...以两个卷积层开始,并以全局平均池化和输出层结束,这也是图像分类中常用的体系架构。利用交叉熵损失对模型进行训练,当模型达到测试性能(99.22%)时停止训练。...边际损失可以直接应用于多目标分类任务,其性能优于标准的二值交叉熵损失。重构和边际损失都可以用于增强 ConvNet。
这样一来,无需复杂的数据扩增,胶囊网络也能实现上看下看左看右看不同方位识别。 但两年过去之后,对于这个方法的研究似乎仍处于起步阶段,CNN依然笑傲深度学习。 这是不是有点雷声大雨点小了?...连创始人都点赞的胶囊网络 在对象检测这个任务上,当前的AI已经展现出了超强的性能,但有个问题,想要训练出一个靠谱的AI,先得投喂它大量的数据。...而胶囊网络的思路是,场景通常包含许多复杂的对象,这些对象又由更简单的部分组成,所以其实无需构建全局等同于仿射变换的模型。 ?...这也就造成了胶囊网络训练速度比CNN慢得多,在CIFAR-10、ImageNet等数据集上准确率也不如CNN。 那么这个更好的胶囊网络,有什么突破吗?...SCAE 根据胶囊网络的原理,为了实现分类,需要构建生成模型(解码器)和相应的推理网络(编码器)。 生成比较简单,因为任意对象都可以产生任意多个部分。
CNN 的训练需要大量训练样本(一般每一类需要数千或数万个样本)才能成功地对图像分类。因此人们对用少量训练样本训练成功的 CNN 有着浓厚兴趣。...研究人员用反卷积网络(deconvolutional network)代替了解码器网络,同时还对胶囊网络做了一些小改动。...这是因为这样的语言难以获得大量标注数据,而深度学习还无法通过少量训练样本正确学习。 为了解决这个问题,我们引入了一种根据现有样本生成新训练样本的技术。...用胶囊网络进行字符识别 我们提出了一种由胶囊网络和解码器网络组成且针对字符识别任务的架构,如图 1 和图 2 所示。 ? 图 1:TextCap 模型:用于字符分类的 CapsNet 模型。 ?...图 2:TextCap 解码器:用于字符重建的解码器网络。通过屏蔽 TextCap 分类器的 DigitCaps 层来获得网络的输入。
这种胶囊自编码器可以无监督地学习图像中的特征,并在无监督分类任务取得最佳或接近最佳的表现。这也是胶囊网络第一次在无监督领域取得新的突破。...利用这种几何关系去重建目标的系统应当对视点的变化具有鲁棒性,因为其本质的几何关系不应随着观察视角的变化而发生改变。 本文中,研究人员描述了一种无监督的胶囊网络。...其中,观察组成目标所有部件的神经编码器被用来推断目标胶囊的存在和姿态。编码器通过解码器的反向传播方法训练。 训练中,解码器使用姿态预测来预测每个已发现部件的姿态。...在第二阶段,目标胶囊自编码器(OCAE)尝试将发现的部件及其姿态安排在一个更小的目标集合中。这个目标集合对每个部件进行预测,从而解释每个部件的姿态。...集群胶囊编码器的公式。论文通过举出集群胶囊编码器的例子,用于说明目标胶囊编码器和它的区别。
近日,包括 Weiwei Sun、Andrea Tagliasacchi、Geoffrey Hinton 等来自英属哥伦比亚大学、谷歌研究院、多伦多大学的研究者提出了用于 3D 点云的无监督胶囊网络。...在这种情况下,既不需要分类标签,也不需要手动对齐的训练数据集进行训练。 最后,通过以无监督的方式学习以对象为中心的表征,该方法在 3D 点云重构、配准和无监督分类方面优于 SOTA 方法。...,如下图 2 所示:研究者训练了一个将点云分解为多个组件的网络,并通过 Siamese 训练设置实现不变性 / 等方差。...实验及结果 自动编码 研究者针对两个训练基线(在单类别和多类别变体中经过了训练)评估了用于训练网络任务(重建 / 自动编码)的方法的性能: AtlasNetV2 [13],一种使用基于补丁(patch-based...定量分析的结果如下表 2 所示: 无监督分类 除了重建和配准(这两者是与训练损失直接相关的任务)之外,本研究还通过分类任务评估了方法的有效性,该分类任务与训练损失没有任何关系。
由于这些关系不依赖于模型查看对象的位置,所以即使在视图发生变化时,模型也能高精度地对目标进行分类。...2017年,人工智能领域最重要的理论家和图灵奖获得者——杰弗里·辛顿,与学生萨拉·萨布尔和尼古拉斯·弗罗斯特一起提出了名为“CapsNet”的机器学习体系架构,这是一种经过差别训练的多层次方法,在流行的基准上实现了最先进的图像分类性能...具体来说就是,负责分析各种对象属性(如位置、大小和色调)的数学函数集胶囊被添加到一种经常用于分析视觉图像的人工智能模型上,并且多个胶囊的预测被重复使用,以形成部件的表示。...胶囊系统非常独特,但与所有的深度神经网络一样,胶囊的功能被安排在相互连接的层中,不同只在于其权重是根据前一层函数预测下一层输出的能力动态计算的,而不是根据数据传输信号。 SCAE包括三个阶段。...首先,第一阶段——利用星座胶囊自动编码器(CCAE)提取待分析图像的像素;第二阶段——部分胶囊自动编码器(PCAE)——将图像分割成组成部分,并在重建图像之前推断它们的姿态;第三阶段——对象胶囊自动编码器
所以,为了做出这个预测,矩形胶囊所做的就是简单地计算一个变换矩阵W_i,j与它自己的激活向量u_i的点积。在训练期间,网络将逐渐学习第一层和第二层中的每对胶囊的变换矩阵。...然而,矩形胶囊和三角胶囊他们俩完全不同意房子胶囊会产出什么,从图中可以看出房子的输出方向是一上一下的。。 ? 因此,可以很合理的假设矩形和三角形是船的一部分,而不是房子的一部分。...例如,这些圆圈中的一个可能代表矩形胶囊对船的最可能姿势的看法,而另一个圆圈可能代表三角胶囊的想法,如果我们假设有许多其他低层的胶囊,然后我们可能就会有有大量用于船胶囊的预测向量。...正如你所看到的,矩形胶囊对船胶囊的预测矢量从初始的0.5更新到现在的0.8,而对房子胶囊的预测矢量下降到0.2。所以它的大部分输出现在去了船胶囊,而不是房子胶囊。 ?...然后和常规的分类神经网络一样,你可以通过最小化交叉熵损失来训练网络,这样你就可以完成了一个图像分类器。 ? 然而,在论文中,他们使用了一个边缘(margin)损失,使得对图像进行多分类成为可能。
二、胶囊网络的起源与动机 胶囊网络(Capsule Networks, CapsNets)是由 Geoffrey Hinton、Alex Krizhevsky 和 Ilya Sutskever 等人于...与之不同,胶囊的输出是一个高维向量。这个输出向量的模长通常用于表示某种特定特征是否存在,而向量的方向则用于编码该特征的更多属性——如位置、方向、大小等。...路由机制与权重更新 在动态路由中,下层胶囊的输出会被加权求和,以生成上层胶囊的输入。这个加权求和不是固定的,而是通过迭代算法动态更新的,使得网络可以自适应地确定哪些信息更应该被传递到上一层。...向量的角度与模长 在胶囊网络中,高维向量的模长(magnitude)通常用于表示某个特定特征出现的概率或强度,而向量的方向则编码了该特征的附加属性,如位置、旋转等。...成功构建胶囊网络模型后,下一步是进行模型训练。
因此在胶囊网络的卷积层中可训练的神经网络单元取决于卷积网络的空间范围(spatial extent)和层间胶囊网络类型的积。...这不仅会使得计算复杂,而且所有的胶囊类型并不都具有显著的关系,因为每一个“对象-组件”的表示并不一定是属于同一个类别的,或者不可能组合起来(不兼容),需要提升胶囊网络的可扩展性。 是不是感觉有点绕?...的 “鲨骑马” 这种生物肯定不是一个类别,也即不具有显著关系的情况,也在网络中计算了一边,因此限制了网络的训练能力。 对于胶囊网络的第二个问题是理论上的问题。...四、实验和结果 作者进行了两组实验: 1#首先比较SOVNET架构与其他胶囊网络的baseline在分类上的transformation鲁棒性; 2# :第二部分是将SOVNET与某些胶囊以及基于分类性能的卷积...论文开展了相关实验,给出了各类分类数据集仿射变化的实验结果,表明该模型比几种胶囊网络基线具有更好的性能。其中第二组实验表明,我们的模型在其他两个数据集上的性能与卷积基线相当。
而风险事件以文本的形式存在,需要采用自然语言理解模型实现风险事件的高精度智能识别,其本质是属于一个文本分类任务。 ...而文本分类在自然语言处理领域处于非常基础且核心的地位,目前文本分类已经广泛运用于金融、政务、银行、证券、运营商等各个行业中的多个场景中,如金融领域和政务领域的风险事件标签。 ...胶囊网络有的预训练模型有一点点提高,但有的有负效果。...还尝试过 用 max_pooling + avg_pooling + 胶囊网络 + bert_pooling等组合,效果均不如直接使用bert_pooler和胶囊网络。...最后的第二层预测使用的是xgboost,整体效果没有达到预期,线上得分仅0.5707 四折的四种模型效果如下: 效果不佳的原因可能和拆分四折的数据分布有关,导致单模分数不是很高。
尽管如此,卷积神经网络也有其局限性,如训练数据需求大、环境适应能力、可解释性差、数据分享难等不足。...相比CNN,使用胶囊网络的一大优势在于,它需要的训练数据量远小于CNN,而效果却毫不逊色于CNN。从这个意义上来讲,神经胶囊实际上更接近人脑的行为。...此外,和其他模型相比,胶囊网络在不同角度的图片分类上,有着更好的辨识度。例如,在下图中,对应的,上一列和下一列的图片属于同一类,它们仅仅是呈现的视角不同。...拿香蕉来举例,“香蕉”就是本体,而香蕉的图片,香蕉的视频,中文“香蕉”二字,英文单词“banana”等,都是描述“本体”的外在符号。...、递归神经网络、长短时记忆网络、去噪自动编码机、堆叠自动编码机、受限玻尔兹曼机、深度信念网络等,并将这些技术用于MNIST手写数字识别任务。
尽管如此,卷积神经网络也有其局限性,如训练数据需求大、环境适应能力、可解释性差、数据分享难等不足。...于是,Hinton教授提出了一个设想:观察者和物体之间的关系,应该由一整套激活的神经元来表征,而不是由单个神经元或一组粗编码的神经元表征。只有这样,有关“坐标框架”之类的先验知识才能有机会被表达出来。...相比CNN,使用胶囊网络的一大优势在于,它需要的训练数据量远小于CNN,而效果却毫不逊色于CNN。从这个意义上来讲,神经胶囊实际上更接近人脑的行为。...此外,和其他模型相比,胶囊网络在不同角度的图片分类上,有着更好的辨识度。例如,在下图中,对应的,上一列和下一列的图片属于同一类,它们仅仅是呈现的视角不同。...拿香蕉来举例,“香蕉”就是本体,而香蕉的图片,香蕉的视频,中文“香蕉”二字,英文单词“banana”等,都是描述“本体”的外在符号。
我们的网络结构由两部分组成:对输入进行分类的胶囊分类网络,以及根据预测的胶囊(predicted capsule)的姿态参数(pose parameters)重建输入图像的重建网络。 ?...., 2020)中使用的分类损失和 L2 重建损失外,我们还引入了一个额外的循环一致性训练损失,该训练损失迫使胜出的胶囊重建结果的分类与原始输入的分类相同。...然而,当输入是一个对抗示例时,与胜出的胶囊对应的重建结果相比,从对应于正确标签的胶囊进行重建的结果更接近于输入(见图 4 中的第二行)。 ?...第一个阶段试图通过遵循标准攻击(例如,标准 PGD 攻击)来欺骗分类器,该攻击的损失为其相对输入的交叉熵损失。然后,在第二阶段,我们重点关注通过考虑重构误差和循环一致性,来欺骗检测机制。...为了证明本文提出的循环一致性损失的有效性,我们构建了一个基线胶囊模型,该模型与我们的偏转模型具有相同的网络结构,但经过不使用额外的循环一致性损失的训练。
而AI领域的发展会是IT中最快的。我们所看到的那些黑客技,其后面无不堆积了大量的论文。而且都是最新、最前沿的论文。 从某种调度来讲,他们所用的技术跟书籍里的内容确实不是一个时代。...将二者结合起来——用联合训练方法共享反向传播的损失值来进行训练—可以使两个模型综合优点,得到最好的结果。 No2 wide_deep模型论文: 为什么Adam被广泛使用?...id=HkghWScuoQ 二、图像分类部分 No4 Xception模型论文: 在那个图像分类的时代,谷歌的Xception系列,像x战警一样,一个一个的打破记录。...具体可以参考以下论文: https://arxiv.org/pdf/1506.07503.pdf 五、高级的卷积网络知识 No22 胶囊网络与动态路由的论文: 这是一股为图像分类降温的寒风,深刻而又尖锐的点出了卷积网络的硬伤...胶囊网络分为主胶囊与数字胶囊,主胶囊与数字胶囊之间的耦合系数是通过训练得来的。在训练过程中,耦合系数的更新不是通过反向梯度传播实现的,而是采用动态路由选择算法完成的。
),而不是以往的标量神经元。...对这10个向量求模,求得模值最大的那个向量代表的就是图片概率最大的那个分类。因为胶囊网络中:用向量模的大小衡量某个实体出现的概率,模值越大,概率越大。...权重更新 和全连接神经网络一样,胶囊网络的每一个连接也有权重。在上面图中,W代表权重,大家需要注意:C不是权重,它叫耦合系数,我会在下面详细讲解,现在所指的权重只有W。...重构网络架构如下: 上图表明,正确预测类别的向量,即模值最大的向量送入包含三个全连接层的网络解码。这一过程的损失函数通过计算FC Sigmoid层的输出像素商店与原始图像像素点的欧氏距离而构建。...而一个训练过的准确度为99.22%的传统CNN模型只能达到66%的准确率。不得不说,Capsule模型的泛化能力的确惊人。
领取专属 10元无门槛券
手把手带您无忧上云