前言 因为公司开发都是内网环境,以往居家办公或非公司环境,都需要进行远程到公司电脑进行办公,为了方便部门同事出差驻场开发,搭建了虚拟专有网络 在实际搭建过程中使用了OpenVPN和SoftEtherVPN...easy-rsa\\pki\\easytls\\tls-auth.key" 0 cipher AES-256-CBC duplicate-cn 右击openpvn托盘图标点击链接,显示绿色代表连接成功 进入网络适配器...pwd=zswc 选择VPN Client安装 打开创建连接,输入对应的ip,端口号,虚拟hub名,用户名密码 会提示你初始化网络适配器,等待即可 直接双击连接vpn,成功后会提示分配vpn的ip
经典卷积网络--ResNet残差网络 1、ResNet残差网络 2、tf.keras实现残差结构 3、tensorflow2.0实现ResNet18(使用CIFAR10数据集) 借鉴点:层间残差跳连,...引入前方信息,减少梯度消失,使神经网络层数变身成为可能。...1、ResNet残差网络 ResNet 即深度残差网络,由何恺明及其团队提出,是深度学习领域又一具有开创性的工作,通过对残差结构的运用,ResNet 使得训练数百层的网络成为了可能,从而具有非常强大的表征能力...,其网络结构如图所示。
Computer Science, 2014. 2.2 经典网络 LeNet-5 LeNet 针对的是单通道的灰度图像 原始图像为 的单通道灰度图像 第一层使用的是 个 的卷积核,步长为 1,...紧接着是一个具有 120 个节点的全连接层 FC1,其和上一层的高级特征图中的 400 个节点进行全连接,而后是全连接层 FC2,有 84 个神经元,最后与输出神经元相连接得到模型最终的输出。...各网络层之间存在连接,每个卷积核的信道数和其输入的信道数相同。...讨论 AlexNet 网络比 LeNet-5 网络要大的多,LeNet-5 网络大约有 6 万个参数,AlexNet 网络包含约 6000 万个参数。这使得其能识别更多的特征。...具体网络结构如下图所示: ? 讨论 VGG-16 指的是这个网络包含 16 个卷积层和全连接层,总共包含 1.38 亿个参数。虽然网络较大,参数量多,但是结构并不复杂。网络结构十分规整。
由于池化窗⼝与步幅形状相同,池化窗⼝在输⼊上每次滑动所覆盖的区域互不重叠。 卷积层块的输出形状为 (批量⼤⼩,通道,⾼,宽)。...AlexNet AlexNet 与 LeNet 的设计理念⾮常相似,但也有显著的区别。...对于给定的感受野(与输出有关的输⼊图⽚的局部⼤⼩),采⽤堆积的⼩卷积核优于采⽤⼤的卷积核,因为可以增加⽹络深度来保证学习更复杂的模式,⽽且代价还⽐较⼩(参数更少)。...4 条线路都使⽤了合适的填充来使输⼊与输出的⾼和宽⼀致。最后我们将每条线路的输出在通道维上连结,并输⼊接下来的层中去。...这样的设计要求两个卷积层的输出与输⼊形状⼀样,从⽽可以相加。 如果想改变通道数,就需要引⼊⼀个额外的 卷积层来将输⼊变换成需要的形状后再做相加运算。
经典卷积网络--InceptionNet 1、InceptionNet网络模型 2、1 * 1的卷积运算是如何降低特征厚度?...完整实现(使用CIFAR10数据集) 借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数...1、InceptionNet网络模型 InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的能力,与 VGGNet 通过卷积层堆叠的方式(纵向)相比...显然,InceptionNet 模型的构建与 VGGNet 及之前的网络会有所区别,不再是简单的纵向堆叠,要理解 InceptionNet 的结构,首先要理解它的基本单元,如图1.1所示。
经典卷积网络--LeNet 1、LeNet5网络结构搭建 2、LeNet5代码实现(使用CIFAR10数据集) 借鉴点:共享卷积核,减少网络参数。...1、LeNet5网络结构搭建 LeNet 即 LeNet5,由 Yann LeCun 在 1998 年提出,做为最早的卷积神经网络之一,是许多神经网络架构的起点,其网络结构如图所示。 ...图中紫色部分为卷积层,红色部分为全连接层,模型图与代码一一对应,模型搭建具体 流程如下(各步骤的实现函数这里不做赘述了,请查看我前面的文章): 输入图像大小为 32 * 32 * 3
一、Inception网络(google公司)——GoogLeNet网络的综述 获得高质量模型最保险的做法就是增加模型的深度(层数)或者是其宽度(层核或者神经元数), 但是这里一般设计思路的情况下会出现如下的缺陷...: 1.参数太多,若训练数据集有限,容易过拟合; 2.网络越大计算复杂度越大,难以应用; 3.网络越深,梯度越往后穿越容易消失,难以优化模型。...为了打破网络对称性和提高 学习能力,传统的网络都使用了随机稀疏连接。但是,计算机软硬件对非均匀稀疏数据的计算效率很差, 所以在AlexNet中又重新启用了全连接层,目的是为了更好地优化并行运算。...,将输出连接 起来,网络自己学习它需要什么样的参数。..., slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope='core') (3)nets: 包含一些经典网络
背景之前参与过一个政务专有云项目,该项目服务需部署在政务专区,但是却和外网kafka有通信,需要消费topic消息,但是由于政务专区网络访问外网都是通过代理网关出去的,kafka与外部通信时也走的这种网络策略...图片对比下发现这个kafka工具开始用代理通信,后面还是点对点了, 172网段可以访问互联网所以能成功获取kafka的数据, 10网段不能访问互联网最后还是不行。...图片总结在与kafka建立连接后,注册中心会给一个源服务端的IP,而这个IP会直接返回给客户端发起,客户端不会再向代理机通信,而会直接访问远程IP,所以代理方式也搞不定。
学习目标 目标 知道LeNet-5网络结构 了解经典的分类网络结构 知道一些常见的卷机网络结构的优化 知道NIN中1x1卷积原理以及作用 知道Inception的作用 了解卷积神经网络学习过程内容...应用 无 下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。...,其实去了解设计网络最好的办法就是去研究现有的网络结构或者论文。...,称为“网络中的网络”(NIN),增强接受域内局部贴片的模型判别能力。...我们甚至可以把这几个FIlter可以看成就是一个简单的神经元结构,每个神经元参数数量与前面的通道数量相等。
网络互联参考模型 1....而TCP/IP模型因其开放性和易用性在实践中得到了广泛的应用,TCP/IP协议栈也成为互联网的主流协议。...是用户与网络的接口。该层通过应用程序来完成网络用户的应用需求,如文件传输、收发电子邮件等。...虽然ICMP、IGMP、TCP、UDP的数据都需要IP协议来封装成数据报,但是从功能上划分,ICMP、IGMP与IP同属于网络层,TCP和UDP属于传输层。...3、外网通过网卡->路由器->互联网。 在外网,不同地域,网络耗时也不一样(经过的节点)。 比如在深圳和北京访问北京阿里云: 深圳耗时在40ms左右 而北京只有5ms左右:
文件传输或电子邮件服务模块的设计,不必关心底层通信线路是光纤还是双绞线 邮局实例: • 邮局对于写信人来说是下层 • 运输部门是邮局的下层 --下层为上层提供服务 • 写信人与收信人之间使用相同的语言...数据的封装与解封装过程: 1)直观: ? 2)大体过程: ? 3)协议描述 ? 4....4.2TCP/IP模型与OSI模型的比较 相同点: 1)两者都是以协议栈的概念为基础 2)协议栈中的协议彼此相互独立 3)下层对上层提供服务 不同点: 1)OSI是先有模型;TCP/IP是先有协议,后有模型...是用户与网络的接口。该层通过应用程序来完成网络用户的应用需求,如文件传输、收发电子邮件等。...3、外网通过网卡->路由器->互联网。 ?
性能对比 年份表 网络 提出的年份 意义 LeNet 1998 鼻祖 AlexNet 2012 兴盛 ZF-net 2013 GoogleNet 2014 VGG 2014 ResNet 2015
: ARP -s 192.168.10.59 00 -50-ff-6c-08-75 解除网卡的IP与MAC地址的绑定: arp -d 网卡IP 8.在网络邻居上隐藏你的计算机...计算机上安装的每一个以太网或令牌环网络适配器都有自己单独的表。如果在没有参数的情况下使用,则 arp 命令将显示帮助信息。 ...-g [InetAddr] [-N IfaceAddr] 与 -a 相同。 ...只有当网际协议 (TCP/IP) 协议在 网络连接中安装为网络适配器属性的组件时,该命令才可用。 .../interactive 对于在运行 command 时登录的用户,允许 command 与该用户的桌面进行交互。
FNN:前馈神经网络 神经网络的最基本也是最经典的形式,结构包括输入层,隐藏层和输出层,根据隐藏层的多少,分为shallow network和deep network(deep learning...4.leaky Relu:相比较Relu,当x小于0时,它并不取值0,而是去一个很小的系数与x的乘积,这样做的好处是,可以避免当x小于0时,导致输出恒为0,进而导致神经元”死掉”的问题, g(x)=αx...此时每一层的结果在上一层输入经过激活函数之后,还要乘一个系数,它的值等于随机失活的比例: h(v)f=m(v)fg(a(v)f) h_f^{(v)}=m_f^{(v)}g(a_f^{(v)}) 可以证明,这样做之后与未使用...Backpropagation 反向传播就是神经网络中的梯度下降法,我们在前面通过前向传播,将数据输入,得到网络的预测输出,然后,我们根据预测值和实际值的区别,将梯度从网络输出层反向传递至输入层,并在此过程中优化模型参数...l层的神经元的个数 [w^l]_{init}=\sqrt{\frac{6}{F_l+F_{l+1}}}\times\mathcal N(0,1),F_l为第l层的神经元的个数 版权声明:本文内容由互联网用户自发贡献
随着技术的不断变迁,专有无线接入网络的时代正在逐渐消失。...运营商希望能在降低成本的同时增加灵活性,其需要易于部署且经济实惠的网络和网络组件,这也导致整个行业从4G专用硬件和专有软件开始转向安装在COTS硬件平台上的开放软件栈。...4G的专有组件 从核心网和RAN的角度来看待无线网络的话,核心网包括骨干网、城域网和区域网(图1)。...4G在很大程度上是通过运行专有软件栈的自定义硬件来实现的,这种方法对于4G网络来说是可以接受的,但是考虑到5G以及所需成本,运营商已经着手开发开源解决方案。...但是,核心的网络编排和自动化层确实需要软件来管理流程。LTE网络通过专有的硬件和软件来管理此任务。由于5G的成本限制,运营商开始寻找利用COTS硬件的标准化开源方案。
神经网络分类: 机器学习的四要素 讨论:线性模型与广义线性模型 对于部分数据来说,其本身就是稀疏,可以通过线性模型直接优化求解,但是实际生活中大多数数据都是不稀疏,并且不可以通过简单的线性模型直接求解可得...另外,神经元可看作一个计算与存储单元,计算是神经元对其输入进行计算功能,存储是神经元会暂存计算结果,并传递到下一层。...与神经元模型不同的是,感知器中的权值是通过训练得到,因此,根据以前的知识我们知道,感知器类似一个逻辑回归模型,可以做线性分类任务,但只能简单的线性分类任务。...3、多层和深度学习网络 每日一学——神经网络(上) 每日一学——神经网络(下) 每日一学——卷积神经网络 现在开始讲解前馈神经网络,首先还是从经典的全链接bp算法开始。...如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数。随机初始化的目的是使对称失效。
通过IP互联 容器带有虚拟网桥,可以有自己的ip,容器间就可以通过ip进行互相通信 启动两个容器 分别ssh登陆,ifconfig查看自己的ip,例如分别为: 192.168.42.4 192.168.42.5...在 .5 中 ping 192.168.42.4 正常 ping 通,说明这两个容器间的网络沟通没有问题 但有一个新的问题,在容器重启后,他的ip会变,这样的话,容器间使用ip来互相沟通,这时就出现了问题...通过容器名称互联 Docker提供了别名连接方式,让容器间的网络沟通不依赖于ip 先看下指定容器名称的命令 docker run -d -p 22 --name net001 dys/centos:ssh
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 经典网络(Yolo) 今天接着上一篇的内容继续...注:推荐精彩文章 深度学习的昨天、今天和明天 人脸检测与识别的趋势和分析 人脸检测与识别技术(怎么去创新?) ---- 今天首先给大家带来“YOLO”!...也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢 YOLO 看到这个封面,相信很多很多都阅读过,其实这是一篇“基于回归方法的深度学习目标检测算法”的经典之作,如果兴趣的您...相比于之前介绍的几个网络,明显高于之前说的几个简单目标检测网络。下面来一个YOLO V2的宣传片!有兴趣的您,可以自己去做一个模型玩一玩,其实过程很不错!...(“计算机视觉战队”微信平台的人脸检测与识别技术(怎么去创新?)也有简单的Demo。) 回归正题,开始说内部的内容!
背景知识 1.1 痛点与解决 1.1.1 图像识别的挑战 虽然图片识别对于人来说是一件轻松的事情,但是对于计算机来说,由于接受的是一串数字,对于同一个物体,表示这个物体的数字可能会有很大的不同,所以使用算法来实现这一任务还是有很多挑战的...下图展示了一些经典模型的准确率和参数数量。 注:Gops表示处理器每秒进行的操作次数,1Gops表示处理机每秒进行 10^9 次操作。 2....图片有一个特性:图片的底层特征是与特征在图片中的位置无关的,比如说下图的两只鸟,一只的嘴在图片上方,一只在中间,无论在哪,它们都可以用一个提取鸟嘴特征的卷积核提取出来。...VGG网络将经典的CNN结构开发到了极致,并达到了深度的极致。在VGG之后出现的各种网络都是在模型结构上进行了改变(如GoogLeNet的inception结构和ResNet的残差结构)。...,下一个浅模型将输入A计算得到输出与输入A本身汇总成为下一个浅模型的输入,依次下去,如下图所示。
之前基本把卷积神经网络的内容过了一遍,还差一点就是网络层的介绍,后来我想了一下,不如和经典的卷积神经网络放在一起,因为这些经典的网络,因为应用了一些比较好的思想而取得state-of-the-art(当前最好...就是第一个卷积核起始的位置与下一个卷积起始的位置相隔4个像素点,挺好理解的,理解不了,可以自己画个图。...神经网络之所以在深度学习之前没有发展起来的一个重要原因就是很容易过拟合,而Dropout是一种避免过拟合的神器!...既然神经元断开了,那么就意味着网络的weights不再更新。然后按照断开之后的神经元的链接方式继续向前传播,利用输出的损失反向传播来更新参数。...图2: Dropout(来源网络) 2.
领取专属 10元无门槛券
手把手带您无忧上云