在机器学习和统计领域,线性回归模型是最简单的模型之一。这意味着,人们经常认为对线性回归的线性假设不够准确。 例如,下列2个模型都是线性回归模型,即便右图中的线看起来并不像直线。...图1 同一数据集的两种不同线性回归模型 若对此表示惊讶,那么本文值得你读一读。本文试图解释对线性回归模型的线性假设,以及此类线性假设的重要性。...回答上述问题,需要了解以下两个简单例子中线性回归逐步运行的方式。 例1:最简单的模型 从最简单的例子开始。...所以,第二个模型如下所示: 图6 第二个模型 结论:线性回归模型的线性假设 上述2个例子的求解过程完全相同(且非常简单),即使一个为输入变量x的线性函数,一个为x的非线性函数。...两个模型的共同特征是两个函数都与参数a、b成线性关系。这是对线性回归模型的线性假设,也是线性回归模型数学单性的关键。
线性回归模型:基础、原理与应用实践 引言 线性回归模型作为统计学和机器学习领域的一项基础而强大的工具,广泛应用于预测分析和数据建模。其简单直观的特性使其成为理解和实践数据科学的入门砖石。...本文旨在深入浅出地讲解线性回归模型的基本概念、工作原理、实现步骤以及在实际问题中的应用示例,帮助读者全面掌握这一经典模型。 1....多重共线性:解释多重共线性问题及其对模型的影响,并探讨解决策略,如VIF(方差膨胀因子)检验。 特征选择:介绍逐步回归、岭回归、Lasso回归等方法,以处理特征冗余和提高模型解释力。 4....局限性与扩展:讨论线性回归模型的假设条件限制,以及如何通过非线性变换、多项式回归等方式扩展模型适用范围。...随着数据科学的不断发展,线性回归模型的实践应用将更加广泛和深入,持续为解决实际问题提供有力支持。
基本形式 给定包含 条记录的数据集 ? : ? 线性回归模型试图学习一个线性模型以尽可能地预测因变量 ? : ?...多元线性回归的假设 同大多数算法一样,多元线性回归的准确性也基于它的假设,在符合假设的情况下构建模型才能得到拟合效果较好的表达式和统计性质较优的估计参数。 误差项 ?...注:当线性回归模型存在多重共线性问题时,可能会有多组解使得均方误差最小化,常见的解决方法是引入正则化。...线性回归模型的变形 1.对数线性回归 对数线性回归本质上仍然是线性回归模型,只是我们将因变量的对数作为模型新的因变量: ?...2.广义线性模型 当数据集不适合用传统的多元线性回归方法拟合时,我们可以考虑对因变量做一些合理的变换。
今天跟大家一起讨论一下,SPSS—多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。...提示: 共线性检验,如果有两个或两个以上的自变量之间存在线性相关关系,就会产生多重共线性现象。这时候,用最小二乘法估计的模型参数就会不稳定,回归系数的估计值很容易引起误导或者导致错误的结论。...提供三种处理方法: 1:从有共线性问题的变量里删除不重要的变量 2:增加样本量或重新抽取样本。 3:采用其他方法拟合模型,如领回归法,逐步回归法,主成分分析法。...” 建立了模型1,紧随其后的是“Wheelbase” 建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等0.1...结果分析: 1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。
学习华校专老师的笔记内容,记录线性模型相关知识。...很多功能强大的非线性模型(nolinear model) 可以在线性模型的基础上通过引入层级结构或者非线性映射得到。...线性回归 问题定义 给定数据集 \mathbb{D}=\left\{\left(\overrightarrow{\mathbf{x}}_{1}, \tilde{y}_{1}\right),\left...^{T} \in \mathcal{X} \subseteq \mathbb{R}^{n}, \tilde{y}_{i} \in \mathcal{Y} \subseteq \mathbb{R} 线性回归问题试图学习模型...最终学得的多元线性回归模型为: image.png 矩阵非满秩 当 \mathbf{X}^{T} \mathbf{X} 不是满秩矩阵。此时存在多个解析解,他们都能使得均方误差最小化。
0,其他的指标不可能为0,所以其他列是0的行应该是缺失的,这样的行应当去掉。...) print(X_bmi.shape) ## (752, 1) # 也可以写作 X_bmi = diabetes_df.iloc[:,5].values.reshape(-1,1) y是一维的没有问题...我找kimi讲解了一下.reshape(-1, 1) 的作用: reshape(-1, 1)是NumPy数组的一个方法,用于改变数组的形状。...reshape(-1, 1)中的-1表示自动计算这一维的大小,以确保总元素数量不变。这里,它会自动计算出需要多少行,以使得数组的总元素数量与原始数组相同。 1表示新的数组将只有一列。...plt.scatter(X_bmi, y) plt.ylabel("Blood Glucose (mg/dl)") plt.xlabel("Body Mass Index") plt.show() 5.拟合线性回归模型并可视化
1、多元线性回归模型及其矩阵表示 设Y是一个可观测的随机变量,它受到p-1个非随机因素 X1、X2、X3···X(p-1)和随机因素ε的影响。...该模型称为多元线性回归模型, 称Y为因变量,X为自变量。 要建立多元线性回归模型,我们首先要估计未知参数β,为此我们要进行n(n>=p)次独立观测,得到n组数据(称为样本)。...上式称为多元统计回归模型的矩阵形式。 2、β和σ²的估计 经过一番计算,得出β的最小二乘估计: ? β的最大似然估计和它的最小二乘估计一样。 误差方差σ²的估计: ? 为它的一个无偏估计。...3.2 线性回归关系的显著性检验 检验假设: ? 若H0成立,则XY之间不存在线性回归关系。 构建如下检验统计量: ?...计算F的观测值F0,若F0<=Fσ时,则接受H0. 3.3 p值检验 对于线性回归关系显著性检验问题, p = P(H0). P(H0)表示在H0为真时的概率。
问题描述 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。可以解释为,利用线性回归方程的最小平方函数对一个或多个自变量和因变量之间的关系进行数学建模。...这种函数是一个或多个称为回归系数的模型参数的线性组合。其中只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。本文将介绍一个二元线性回归问题。...解决方案 1 线性回归原理 回归问题研究的是因变量和自变量之间的关系,在中学阶段学习过以一个二元一次方程y = w*x + b 这样一条直线对线性关系的表述。...图2 运行结果 结语 通过这样一个简单的线性回归问题,可以初步感受到借助python语言来解决一个数据分析处理的问题的便携性和功能性是十分强大的。...不仅如此,在面对其他更为复杂的数学分析问题,利用编程和建立数学模型来解决会十分方便和高效。 END 主 编 | 王文星 责 编 | 吴怡辰 where2go 团队
本文将探讨线性回归的核心理论,常见问题,如何避免这些错误,并提供一个实践案例及代码示例。...多项式特征线性回归的一个限制是它只能捕捉线性关系。在许多现实世界的问题中,因变量和自变量的关系可能是非线性的。通过创建自变量的多项式特征,我们可以将非线性关系转化为线性形式。...处理缺失值数据中经常会出现缺失值,线性回归模型在处理这些值时可能会出现问题。...大规模数据处理对于大规模数据集,传统的线性回归模型可能面临内存不足或计算效率低下的问题。...结论线性回归模型简单易用,但需注意模型假设、共线性和异常值等问题。在实际应用中,理解这些概念并学会识别和处理潜在问题,将有助于构建更准确的预测模型。
线性回归应用场景 房价预测,通过分析房地产市场的历史数据,如房屋大小、位置、建造年份等因素,线性回归可以帮助预测未来房价的走势。...销售额预测,企业可以利用线性回归模型来预测产品的销售额,这通常涉及到产品价格、市场营销预算、季节性因素等变量的分析。...线性回归(Linear regression) 线性回归是一种利用直线方程对变量之间关系进行建模的回归分析方法。...平方损失 回归问题的损失函数 yi 为第i个训练样本的真实值 h(xi) 为第i个训练样本特征值组合预测函数又称最小二乘法 import numpy as np from sklearn.linear_model...在机器学习中,特别是在线性回归模型中,梯度下降法通常用来最小化预测值与实际值之间的差距,这个差距通过损失函数来量化。
1.线性回归模型的具体步骤和要点: 1.收集数据: 首先,需要收集与研究问题相关的数据。这些数据应包括一个或多个自变量(特征)和一个因变量(目标)。...2.探索性数据分析: 在建立模型之前,通常会对数据进行探索性分析,包括可视化和描述性统计分析,以了解数据的分布、相关性和异常值等情况。 3.选择模型: 根据问题的特点选择合适的线性回归模型。...如果只有一个自变量,可以使用简单线性回归模型;如果有多个自变量,可以使用多元线性回归模型。 4.拟合模型: 利用最小二乘法或其他拟合方法来估计模型的参数。...4.方差膨胀因子(VIF): 用于检测自变量之间的多重共线性问题。 6.解释结果: 分析模型的参数估计,理解自变量与因变量之间的关系。...2.线性回归模型公式分析包括以下几个方面: 3.模型代码实现 具体的需要根据具体数据磨合 1.代码_python import numpy as np import statsmodels.api as
在机器学习和深度学习的世界中,线性回归模型是一种基础且广泛使用的算法,简单易于理解,但功能强大,可以作为更复杂模型的基础。...使用PyTorch实现线性回归模型不仅可以帮助初学者理解模型的基本概念,还可以为进一步探索更复杂的模型打下坚实的基础。...⚔️ 在接下来的教程中,我们将详细讨论如何使用PyTorch来实现线性回归模型,包括代码实现、参数调整以及模型优化等方面的内容~ 我们接下来使用Pytorch的API来手动构建一个线性回归的假设函数损失函数及优化方法...14.5(加上或减去由于noise参数引入的噪声) # coef:权重系数,表示线性回归模型中每个特征的权重,y_pred = x * coef + bias x = torch.tensor...这是PyTorch中用于计算预测值与真实值之间均方误差的损失函数,主要用于回归问题。
线性回归和梯度下降模型 概要 本文主要讲解线性回归模型的原理,并以python和paddlepaddle为例讲解怎么实现一个线性回归模型,并用matplotlib画出训练后的效果。...线性回归 机器学习中的分类和回归是两种有监督学习的方法,分类是指区分出类别,比如分辨哪些是猫,区分男人女人。而回归问题是指根据输入,给出的输出是一个具体的数值;比如房价预测,比如天气预测等。...而线性回归,是指训练出来的模型是一个线性模型(一条直线)。如y= ax + b,如图1-1所示。 ? 1-1 一般的模型训练,一般分为几个过程:模型的选择,定义损失函数,参数初始化,模型训练。...模型训练 1)模型选择 线性回归中,我们定义我们的模型为Y = WX + b;说明:如果我们的训练数据属性是多维的(比如人有身高,体重等),那么W就是多维数组; 2)损失函数 线性回归中用到的损失函数是估计值和真实值直接的方差...房价预测实例-python 现在我们用房价预测的实例在解释说明下线性回归模型。
1,最小二乘公式推导: 线性模型的假设条件: 1),y的均值是x的线性组合(LinearFunction); 2),残差e_i独立于x; 3),给定x, 残差e_i要服从正态分布(Normal Distribution...2.1,Ridge回归: 使用L2正则的线性回归模型就称为Ridge回归(岭回归),即上图的第一个公式。...2.2,LASSO回归: 使用L1正则的线性回归模型就称为LASSO回归(Least Absolute Shrinkage and Selection Operator),即上图的第二个公式。...2.3,Elasitc Net算法: 同时使用L1正则和L2正则的线性回归模型就称为Elasitc Net算法(弹性网络算法),公式如下: ?...使用局部加权回归,可以拟合一条趋势线,将该线作为基线,偏离基线距离较远的则是真正的异常值点。实际上,局部加权回归(Lowess)主要还是处理平滑问题的多,因为预测问题,可以有更多模型做的更精确。
比如实现线性回归。...tensorflow的线性回归代码当然不如scikit learn的简洁,在scikit learn中只需要几行代码: from sklearn.linear_model import LinearRegression...看起来麻烦,其实是提供了更加个性化的解决方案,比如可以自定义误差函数,达到个性化的模型效果。 而像梯度下降优化器这种写起来麻烦的功能,tensorflow已经实现好了。...下面是用tensorflow实现线性回归的完整代码。...y_train = l[rnd_indices] x_test = f[~rnd_indices] y_test = l[~rnd_indices] #tensorflow模型
求θ的公式 在视频教程中,吴恩达老师给了我们一个如下图红色方框内的求参数 θ 的公式 ? 先对图中的公式简单的说明一下。...具体到上图中的例子,X 和 y在上图已经有了,它们都是已知的值,而未知的 可以通过图中的公式以及X和y的值求出来,最终得到假设函数(hypothesis function)为 假设函数和代价函数 多元线性回归的假设函数和代价函数如下...因为当J(θ)取最小值时,该函数对于θ的导数为0,于是我们可以得到J'(θ)=0的方程,从而解出θ的值。...于是有 根据矩阵的复合函数求导法则有 先来推导 ,J是关于u的函数,而u是一个元素为实数的m维列向量,所以 与 的点积是一个实数,也就是有 根据因变量为实数,自变量为向量的导数定义,可得...再来看 的推导,这是向量对向量的求导,根据其定义,有 因为y是一个元素为实数常量的m维向量,所以它对n+1维的列向量θ求导会得到一个m行n+1列的0矩阵,也就是 根据公式, 所以 把(2)
大家好,又见面了,我是你们的朋友全栈君。 刚开始学习机器学习的时候就接触了均方误差(MSE,Mean Squared Error),当时就有疑惑,这个式子是怎么推导的,但是因为懒没有深究。...今天看到了唐宇迪老师的机器学习课程,终于理解他是怎么推导的了。一定要一步一步看下去,别看他公式这么多,随便认真看一下就能理解的! 问题描述 我们有工资和年龄两个特征,要预测银行会贷款给我们多少钱?...似然函数 似然函数用于参数估计,即求出什么样的参数跟我们给出的数据组合后能更好的预测真实值,有: (6) 取(6)式对数,将连乘转化为加法,这也是一般似然函数的求解方法: (7) 将(7...)式展开并化简有: (8) (8)式等式右侧的第一项为一个常量,似然函数要取最大值,因而第二项越小越好,有: (9) (9)式相当于最小二乘法的式子,即是均方误差的表达式。...下一步我们要解出 θ θ θ的表达式 4.
线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式 什么是线性回归?...线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。...1], [2], [3], [4], [5]]) y = np.array([2, 3, 4, 5, 6]) 创建线性回归模型 然后,我们创建一个线性回归模型实例: model = LinearRegression...线性回归是一种简单而有效的预测模型,适用于许多不同类型的数据集。通过使用Python的Scikit-Learn库,我们可以轻松地构建和应用线性回归模型,并对数据进行预测。...希望本文能够帮助读者理解线性回归的基本概念,并能够在实际应用中使用Python实现线性回归模型。
手写线性回归 使用numpy随机生成数据 import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 np.random.seed(42)...# 可视化数据 plt.scatter(X, y) plt.xlabel('X') plt.ylabel('y') plt.title('Generated Data') plt.show() 定义线性回归参数并实现梯度下降...对于线性拟合,其假设函数为: h_θ(x)=θ_1x+θ_0 这其中的 θ 是假设函数当中的参数。...) plt.ylabel('y') plt.legend() plt.title('Linear Regression using Gradient Descent') plt.show() 实现多元线性回归...多元线性回归的梯度下降算法: θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} 对 \frac{∂J(θ)}{∂θ_j} 进行等价变形: θ_j≔θ_j−α\frac{1}{m}∑_{i=1}^
0.完整代码 下面一段代码实现了2个功能: 1.用keras库编程实现拟合线性方程的回归模型; 2.对比了4种优化器的性能。...__class__, w_error, b_error)) 上面一段代码的运行结果如下: X[:5]: [ 2. 4. 6. 8. 10.]...1.结论 对于线性方程的回归模型,使用Adam优化器能够得到不错的拟合效果。
领取专属 10元无门槛券
手把手带您无忧上云