素数环 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环...为了简便起见,我们规定每个素数环都从1开始。例如,下图就是6的一个素数环。 输入有多组测试数据,每组输入一个n(0<n<20),n=0表示输入结束。输出每组第一行输出对应的Case序号,从1开始。...如果存在满足题意叙述的素数环,从小到大输出。 否则输出No Answer。
素数环-dfs+素数打表(易理解) #include #include int a[50],b[50],vis[50],n; void prime(){...//素数打表 memset(a,0,sizeof(a)); a[0]=a[1]=1; //素数为0非素数为1 for(int i =2;(!...a[i])&&i<50;i++) //a[i]=1表明是素数,则其倍数也是素数因为i就是前边的素数的倍数 for(int j=i+i;j<50;j+=i) a[j]=1; } bool dfs...(int num){ for(int j=2;j<=num;j++){ if(a[b[j-1]+b[j]]) return false;//如果相邻的两个相加不是素数就返回...} if(num==n){ //当个数够n个之后就查看最后一个和第一个相加是否是素数 if(!
1-n组成的素数环,素数环就是一个数组中后一个数加前一个数必须组成素数,a[i]+a[i-1]是素数,又因为是环状所以,首末相加也要上素数即a[0]+a[n-1]是素数,因为是环状所以会有很多重复的排列...我们也是用回溯加剪枝来求素数环 #include #include using namespace std; unsigned char visit[100]...是否用过,和dfs一样 char prime[] = {0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0};//0-32的素数表...(int *arry,int cur,int n) { if(cur == n && is_prime(arry[0]+arry[n-1])) //如果排满了再判断一下末尾的和开头的是否能组成素数...visit[i]) //如果没有访问过 { if(is_prime(i+arry[cur-1]))//判断是否能组成素数
n = 4的排列有 1,2,3,4 相邻两个数相加都是素数,符合题意 1,3,2,4 2和4相加不是素数,不符合题意 1,3,4,2 4和2相加不是素数,不符合题意 1,4,2,3...4和2相加不是素数,不符合题意 1,4,3,2 相邻两个数相加都是素数,符合题意。...2和4相加不是素数,不符合题意 1,2,5,3,? 5和3相加不是素数,不符合题意 1,2,5,4,? 5和4相加不是素数,不符合题意 1,3,?...1和3相加不是素数,不符合题意 1,4,2,? 4和2相加不是素数,不符合题意 1,5,? 1和5相加不是素数,不符合题意 所以n=5时,没有答案。...if(pos == n) // 放完了n个数 { if(prime[a[pos] + 1]) //这是一个环,
count++;//计数器加1 if(count == a.length&&p(prant[0],a[m])){ //注意第一个数和最后一个数相加的和也必须为素数...dfs(a,color,prant,count,i); color[i]=-1; } } } //判断是不是素数...string.h> using namespace std; int n; int df[21]; int t=1; int m[21]; int mi; bool pn(int x,int y){//判断素数
题目描述 写一个判断素数的函数,在主函数输入一个整数,输出是否素数的信息。...输入 判断次数和每次输入的任意整数 输出 每次的输入是否为素数 输入样例1 4 17 5 6 19 输出样例1 prime prime not prime prime AC代码
素数(又名质数),即只能被数字 1 和⾃⾝整除、且⼤于 1 的⾃然数。公元前 300多年,古希腊数学家欧⼏⾥得就证明了有多个素数的存在。素数是“哥德巴赫猜想”等许多数学猜想的基础。...问题:如何列出 1 到 100 的素数数列,并计算出素数的个数?...if n%j==0: break else: number+=1 print(n,end=' ') print("1-100之间的素数是
质数(Prime number),又称素数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个因数的数)。...那么想计算出一个随机数是不是质数用Python应该怎么写呢?...% n) 内容扩展: 素数判断的实例: for i in range(2,100): for j in range(2,i): if i%j==0: break
脑袋一热,想看一下300以内的最大素数是多少,就写了一个。 注意:对正整数n,如果用2到n的平方根之间的所有整数去除,均无法整除,则n为质数(素数)。...# -*- coding:utf-8 -*- import math import time ss = [] # 放可能是素数的列表 fss = [] # 放可能是非素数的列表 result =...) start = time.clock() # 遍历所有小于X,大于2的数 for xx in range(2, x+1): # 只要xx的数,不能被2至xx的平方根的所有数整除,就是素数...# print("非素数", xx) fss.append(xx) # 只要x中的数没有出现在非素数列表中,则它就是素数 for j in range(2, x+1):...# 判断是否为素数 def is_prime(n): if n == 1: return False for i in range(2, int(math.sqrt(n)
''' 简述:区间范围101-200 要求:判断这个区间内有多少个素数,并逐一输出。
就是经典的约瑟夫环。总共有41个人,排成一排,数到3的人自杀,问最后剩下的是那两个号码? 这个题目最早是用指针实现的。在我面试python的过程中遇到了,我嫌麻烦,所以只写了伪代码。...python是很方便的,为什么非要用指针去实现呢,这也表现出我对语言的实用不熟练吧。这也是我面试过程中表现最突出的问题。好吧,分析一下,其实很简单,就是数数,只不过死去的人不参与计数。...len(dead)<s - 3: ans(p) for i in p: if i not in dead: print i, 其实用python
pip install virtualenv # 安装virtualenv [root@saltstack-ui ~]# virtualenv env # 初始化一个虚拟环境,名为env New python... executable in env/bin/python Installing setuptools, pip, wheel... done....pip (7.0.3) setuptools (17.0) wheel (0.24.0) (env)[root@saltstack-ui ~]# deactivate # 退出虚拟环境 参考链接:python
问题描述:N个人围成一圈,从第一个人开始报数,报到m的人出圈,剩下的人继续从1开始报数,报到m的人出圈;如此往复,直到所有人出圈。(模拟此过程,输出出圈的人的序...
return False for i in range(2,num): if num%i==0: return False return True //arr为列表类型,求出1-100之间的素数
首先生成指定范围内的所有自然数,然后从前往后遍历其中的数字,并分别删除这些数字的倍数,最后剩下的数字都是素数。...很久很久以前,曾经写过一个使用列表+filter()函数的实现,详见Python使用筛选法计算小于给定数字的所有素数,本文介绍使用Python集合解决这个问题的思路和实现。 参考代码: ?
, 71, 73, 79, 83, 89, 97] 实例补充: def all_prime(num): lst = [] if num <= 1: return '0 ~ %d以内没有任何素数...for j in range(2, int(i/2)+1): if not i % j: break else: lst.append(i) return lst 到此这篇关于python...如何求100以内的素数的文章就介绍到这了,更多相关如何用python求100以内的素数内容请搜索ZaLou.Cn
第一次出队的那个人的编号是( m-1)%n ,第二次重新开始的编号是m%n 约瑟夫环是一个经典的数学问题,我们不难发现这样的依次报数,似乎有规律可循。为了方便导出递推式,我们重新定义一下题目。...,M)=(f(N−1,M)+M)%N f(N,M)表示,N个人报数,每报到M时杀掉那个人,最终胜利者的编号 f(N−1,M)表示,N-1个人报数,每报到M时杀掉那个人,最终胜利者的编号 公式理解: python...class Solution: def LastRemaining_Solution(self, n, m): # write code here # 用列表来模拟环,
刚学编程的时候,我们大多需要做的一道题,那就是用C语言来判定一个数是否是素数。...那时候很自然的会想到,对于数n,直接遍历一下n以下的数x,如果n%x等于0,说明可以被整除,也就不是素数。...从定理2可知,如果一个整数不能被小于或等于其平方根的素数整除,则它就是素数 。 OK,我们的第二种解法就是遍历小于sqrt(n)的数。...Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数。...Output 对于每个给定范围内的取值,如果表达式的值都为素数,则输出"OK",否则请输出“Sorry”,每组输出占一行。
/usr/bin/python # -*- coding:utf-8 -*- def initList(n): list = [] for i in range(n):
【蓝桥杯】约瑟夫环–python ## 题目: 设有 n 个人围坐在圆桌周围,现从某个位置 k 上的人开始报数,报数到 m的人就站出来。...# 约瑟夫环 n, k, m = input().split() # print(n,k,m) List = list(range(1, int(n) + 1)) # 由于指定从k开始报号,所以把列表做一些处理
领取专属 10元无门槛券
手把手带您无忧上云