首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法复杂度O(1),O(n),O(logn),O(nlogn)的含义

相信很多开发的同伴们在研究算法、排序的时候经常会碰到O(1),O(n),O(logn),O(nlogn)这些复杂度,看到这里就会有个疑惑,这个O(N)到底代表什么呢?带着好奇开始今天文章。...首先o(1), o(n), o(logn), o(nlogn)是用来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...其作用: 时间复杂度是指执行这个算法所需要的计算工作量; 空间复杂度是指执行这个算法所需要的内存空间; 时间和空间都是计算机资源的重要体现,而算法的复杂性就是体现在运行该算法时的计算机所需的资源多少;...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 时间复杂度为O(n)—线性阶,就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标。

7.1K30

算法复杂度 O(NlogN)

算法书上对复杂度的从小到大排序是:O(logN), O(N), O(NlogN), O(N^2), O(N^3) .... 今天突然想到了一个问题,到底 O(NlogN) 会比 O(N) 慢多少呢?...logN 呗 这个答案不能算错,但是并不直观,我们求助一下数学上的图像 ?...115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 目前预测的宇宙的原子总数量级为...10^80 ,基于 2^10 = 10^3 转换,宇宙原子总数量级约为 2^267 , 因此可以说,logN 的极限值是267。...这个值相对于数据规模来说,已经可以忽略不计了,应用复杂度的计算原则来说,logN 是可以当作一个常数舍弃掉的(当然实际上不可以)。 所以,如果一个算法能有 O(NlogN) 的复杂度,已经是很好的了。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法中描述复杂度的大O是什么意思?

    简介 算法是解决问题的方法,通常一个问题会有多种解决方法,就是有多种算法,那么我们如何决定哪个算法更好或者更高效呢?...为了描述一个算法的效率,就用到了这个大O,包括: O(n) 线性时间操作 O(1) 常数时间操作 O(log n) 对数时间操作 例如在 Redis 的文档中,对每个命令都会给出复杂度描述 ? ?...明白大O的作用有助于我们提高程序的效率,下面看看他们的具体含义 O(n) 线性时间操作 假设有一个盒子,其中有多个印着数字的卡片(例如 1, 2, 3, 4, … 16) 现在我们被要求找出数字6的卡片...(1, 2, 3, 4, … 16),在盒子外面写上盒子中有16个数字 当有人问我们盒子里有多少个数字的时候,我们看一眼盒子上的标记就可以马上告诉他有16个 这就是常数操作,记为 O(1) O(log...,很不错 知道了大O的含义,我们也就可以更好的选择算法,例如 redis 中的 keys命令,他的复杂度是 O(n),我们就要慎用了

    1.9K50

    算法复杂度O(logn)详解

    一.O(logn)代码小证明 我们先来看下面一段代码: int cnt = 1; while (cnt < n) { cnt *= 2; //时间复杂度为O(1)的程序步骤序列 } 由于...cnt每次在乘以2之后都会更加逼近n,也就是说,在有x次后,cnt将会大于n从而跳出循环,所以 (2 ^ x = n) , 也就是 (x = log_2n) ,所以这个循环的复杂度为O(logn) 二...., (logN) 的算法效率是最高的 三.常见的 (logN) 算法 1.对分查找 - (int)BinarySearch:(NSArray *)originArray element:(int)element...$$库里有两个常量M_E和M_PI M_E代表的是自然对数的底数e M_PI代表的是圆周率π 最后,也是最基本的最重要的 当题目的数据范围达到了 (10^{18}) 的时候,很显然就要用O(logn...)的算法或数据结构了

    3.3K40

    算法素颜(第3篇):KO!大O——时间复杂度

    即:同等输入规模下,第一种算法的时间开销是第二种算法时间开销的2倍。 这种复杂度关系总是常数倍的,即使n取无穷大也是。用数学语言表示就是: ?...推论3.4: 算法1比算法2的复杂度量级高等价于 ? 大O登场 通常比较算法复杂度,只用比较量级即可。量级用O()表示。...O()定义: (i) 如果算法T1与算法T2的复杂度在同一量级,那么O(T1) = O(T2) (ii) 如果算法T1比算法T2的复杂度量级高,那么O(T1) > O(T2) (iii) 如果算法T1比算法...根据上述O()的定义:O(T1) = O(T2) 这里其实蕴含了一个非常实用的结论: 推论3.5: 算法复杂度的大O表示可以简化为该算法最高阶部分的复杂度的大O表示。...大部分的算法或者复杂度理论的书籍,在介绍大O时,要么过于数学形式化,要么过于感性非严格化。 本篇文章旨在用最少的数学知识、启发式行文方式、全新的原创视角,为读者构建一个清晰、严格的时间复杂度概念。

    84130

    【转】算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度。这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。 O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。...比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。...比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

    1.2K10

    复杂度O

    1. big O的含义 在学术界,严格地讲,O(f(n))表示算法执行的上界。比如,归并排序算法的时间复杂度是O(nlogn)的,同时也是O(n^2) 在业界,我们就是用O来表示算法执行的最低上界。...所以,我们一般不会说归并排序是O(n^2)的。 2. 例题: 有一个字符串数组,将数组中的每一个字符串按照字母序排序;之后再将整个字符串数组按照字典序排序。整个操作的时间复杂度?...如果要想在1s之内解决问题: (1)O(n^2)的算法可以处理大约10^4级别的数据; (2)O(n)的算法可以处理大约10^8级别的数据; (3)O(nlogn)的算法可以处理大约10^7级别的数据;...O(logn) 二分查找法的时间复杂度是O(logn)的 不要看到for循环,就认为是一层O(n),下面是两个例子 例1: 不是O(n^2),而应该是O(nlog(n))。...递归 6.1 递归中进行一次递归调用的复杂度分析: 时间复杂度:O(logn) 如果递归函数中,只进行一次递归调用,递归深度为depth;在每个递归函数中,时间复杂度为T;则总体的时间复杂度为O(T*

    41910

    算法大O表示法

    在计算机编程算法中,O 是用来描述函数增长率的符号,来源于数学中的大O符号,也叫做大O表示法或者渐进表示法。它的全称是“Order of”,翻译过来就是“某某的数量级”。...在计算机科学中,我们使用大O表示法来描述算法的时间复杂度和空间复杂度。对于一个给定的函数,O(函数) 描述了当输入值趋向于无穷大时,函数的上限增长率。...如果说一个算法的时间复杂度是O(n²),那么数据量翻倍,执行时间大约会变为原来的四倍。 要注意的是,大O表示法提供的是最糟糕的情况下的复杂度估计。...比如,一个排序算法可能在最差情况下具有O(n²)的复杂度,但在最好或平均情况下可能只有O(n log n)的复杂度。...总的来说,大O表示法是一种描述算法复杂度的工具,让我们可以对算法的效率进行量化分析和比较。

    27730

    算法:大O符号解释

    O(n),O(1),O(log n)等大O符号被用来表示算法的效率。在这篇文章中,你会找到每个大O符号的例子和解释。 本文旨在解释大O符号是简单的。...大多数学生和程序员都理解O(n)和O(1),但是理解O(log n)却有点困难。我尽可能简单地解释三个基本的大O符号。 让我们来回顾一下。 什么是算法? 算法是用来完成特定操作或解决问题的方法。...我们都知道,解决某个问题的方法不止一种,同样,可以用多个算法来解决一个给定的问题。 想象一个场景:如果有多个算法/步骤来解决问题,我们如何找到哪个更好或更有效?...为了表示算法的效率,使用O(n),O(1),O(log n)等大O符号。 常见的大O符号是: O(n):线性时间操作。 O(1):恒定时间操作。 O(log n):对数时间操作。...为了理解大O符号,我们需要了解恒定时间操作,线性时间操作和对数时间操作。 现在让我们一起来随着例子/问题来学习这些大O符号。

    1.3K10

    时间复杂度o(1), o(n), o(logn), o(nlogn)

    1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度为O(1)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度为O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。 指数函数,一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数。

    1.4K10

    数据结构与算法 1-2 时间复杂度与大O表示

    本系列是我在学习《基于Python的数据结构》时候的笔记。本小节主要介绍如何衡量算法效率,从通过程序执行的时间衡量到使用"大O记法"表示的时间复杂度来衡量。...此时我们将T(n) = O(g(n)),此时的T(n)就是时间复杂度,此时将时间复杂度用"大O"表示法表示,也就是O(g(n)),此时称g(n)为F(n)的渐进函数。...时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)。...前面从直观的角度来分析,接下来从数学的角度来分析。 对于算法的时间效率,我们可以用"大O记法"来表示。"...大O记法":对于单调的整数函数f,如果存在一个整数函数g和实常数c > 0,使得对于充分大的n总有f(n) 的一个渐进函数(忽略常数),记为f(n) = O(g(n

    54400

    什么是算法中的大 O 符号?

    大 O 符号是一种数学符号,用于计算机科学中描述算法的效率,特别是时间复杂度和空间复杂度。 它提供了一个上限,描述了随着输入数据大小增加,算法的运行时间或内存使用量的增长速度。...大 O 符号主要用于表达以下内容: 时间复杂度:衡量算法的运行时间如何随着输入大小的变化而变化。例如,时间复杂度为 O(n) 的算法表示其运行时间随着输入大小的线性增长。...空间复杂度:衡量算法的内存使用量如何随着输入大小的变化而变化。例如,空间复杂度为 O(n) 的算法表示其内存使用量随着输入大小的线性增长。...04 O(n^2) - 二次方时间 运行时间随输入的大小呈二次方增长。 典型应用 简单的排序算法,如冒泡排序、选择排序和插入排序。 涉及输入内容嵌套循环的算法(例如,比较所有元素对)。...09 O(sqrt(n)) - 平方根时间 运行时间与输入大小的平方根成比例增长。 典型应用 涉及在一定范围内搜索的算法,如查找 n 以内所有素数的 Eratosthenes 筛法。

    18210

    Python 算法基础篇:大O符号表示法和常见时间复杂度分析

    Python 算法基础篇:大 O 符号表示法和常见时间复杂度分析 引言 在分析和比较算法的性能时,时间复杂度是一项重要的指标。而大 O 符号表示法是用来描述算法时间复杂度的常见表示方法。...大 O 符号表示法 大 O 符号表示法是一种用来描述算法时间复杂度的记号系统。它表示算法运行时间随输入规模增长的上界。在大 O 符号表示法中,我们通常关注算法的最坏情况下的运行时间。...a ) 大 O 符号的定义 大 O 符号表示法的定义如下: O ( g ( n )):表示算法的时间复杂度为 g ( n )。 g ( n ):表示一个函数,表示算法的运行时间。...总结 本篇博客介绍了大 O 符号表示法和常见时间复杂度的概念,并通过 Python 代码示例演示了它们的应用。大 O 符号表示法是描述算法时间复杂度的常见表示方法,它帮助我们比较和评估不同算法的性能。...常见时间复杂度分析则通过观察算法的结构来确定算法的时间复杂度。 理解大 O 符号表示法和常见时间复杂度分析可以帮助我们选择合适的算法来解决问题,并评估算法的性能。

    57200

    (面试)场景方案:如何设计O(1)时间复杂度的抽奖算法?

    这个抽奖的并发体量是非常大的,所有支付完成的用户,都可以参与到抽奖。但这么大规模的用户参与抽奖,从来也不会感觉有卡顿。它是怎么设计的呢?...对于不同概率的抽奖配置,我们也有为它设计出不同的抽奖算法策略。让万分位以下的这类频繁配置的,走O(1)时间复杂度。...如;O(n)、O(logn) 如图; 算法1;是O(1) 时间复杂度算法,在抽奖活动开启时,将奖品概率预热到本地(Guava)/Redis。如,10%的概率,可以是占了1~10的数字区间,对应奖品A。...算法2;是O(n) ~ O(logn)算法,当奖品概率非常大的时候,达到几十万以上,我们就适合在本地或者 Redis 来初始化这些数据存到 Map 里了。...O(1)、O(logn) 时间复杂度的算法,装配和抽奖的实现都是不同的。

    17610

    【计算理论】计算复杂性 ( 算法复杂度标记 | 渐进上界 | 大 O 记号 | 常用的渐进上界 )

    文章目录 一、渐进上界 二、大 O 记号 三、常用的渐进上界 一、渐进上界 ---- \rm g(n) 是 \rm f(n) 的渐进上界 : 存在 \rm c , 并且存在 \rm N ,...\rm N , 使得任何 \rm n 并且 \rm n \geq N , \exist N \ \forall n ( n \geq N ) 上述表述 , 表示 当 \rm n 充分大...\rm cg(n) , 当 \rm n 充分大时 , 一定有 \rm f(n) \leq cg(n) , 这是一个趋势 , 称 \rm g(n) 是 \rm f(n) 的渐进上界 ;...在渐近分析中 , 常数 \rm c 一般忽略不计 , 其大小是 2 , 3 或者几亿 都不重要 ; 二、大 O 记号 ---- \rm f(n) = O(g(n)) 三、常用的渐进上界 ----...0) 大 \rm O 记号运算 : \rm O(n) + O(n^2) = O(n^2) , 忽略低阶项 ; 渐进上界表示符号会 忽略系数影响 , 忽略低阶的项 ;

    42200

    时间复杂度O(n)和空间复杂度

    算法对于敲代码的应该都听过,不管是复杂的还是简单的,衡量算法效率的两个重要指标就是时间复杂度和空间复杂度。 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。...如果单纯以时间来衡量时间复杂度不是很准确,因为相同算法在不同环境或者不同数据下运行时间是不一样的。所以,时间复杂度一般用大O符号表示法。...应该有人会觉得log的底数是10,而我们这边底数是2,但在算法里面,我们只会用数学的方法把n无限大去比较,所以不管底数是多少,算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。...这边执行次数是n*m,用数学的方式n和m趋于无穷大的时候,n≈m,于是执行次数就是n^2,所以时间复杂度是O(n^2)。...而时间复杂度也是能比较的,单以这几个而言: O(1)O(logn)O(n)O(n²)O(n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。

    77210

    【论文阅读笔记】Myers的O(ND)时间复杂度的高效的diff算法

    但是这样子做是存在很多问题的,因为这样做就无法对不同分支的代码他们各自的特性进行整合,最终保留的只是其中一个分支的代码。因此,加入按行进行比较的diff算法是非常必要的。...之前学的基于DP的算法的时间复杂度是O(MN),也就是我们所说的N平方复杂度。对于大量的数据而言,之前的算法速度是很慢的。 编辑图 因此,Myers在论文中引入了编辑图(Edit Graph)的概念。...而且,狄克斯特拉算法哪怕经过了优先级队列的优化,时间复杂度达到了O(ElogE),但是这个仍然比Myers的算法的时间复杂度高。...关于上面两项引理的证明,有兴趣的读者可以查阅论文原文的第五页,即可看到证明。 算法思路 Myers的diff算法是贪心的、使用了动态规划的思想的。...MYERS “An O(ND) Difference Algorithm and Its Variations” https://neil.fraser.name/writing/diff/myers.pdf

    80930

    我是如何将递归算法的复杂度优化到O(1)的

    笔者在不断地学习和思考过程中,发现了这类经典模型竟然有如此多的有意思的求解算法,能让这个经典问题的时间复杂度降低到 \(O(1)\) ,下面我想对这个经典问题的求解做一个较为深入的剖析,请听我娓娓道来。...如此高的时间复杂度,我们定然是不会满意的,该算法有巨大的改进空间。我们是否可以在某种意义下对这个递归过程进行改进,来优化这个时间复杂度。...遗憾的是,该算法共需要使用 \(O(n)\) 规模的附加空间。如何进一步改进呢? 减而治之 若将以上逐层返回的过程,等效地视作从递归基出发,按规模自小而大求解各子问题的过程,即可采用动态规划的过程。...我们使用矩阵快速幂的方法来达到 \(O(log(n))\) 的复杂度。...利用这个新的递归公式,我们计算斐波那契数列的复杂度也为 \(O(log(n))\),并且实现起来比矩阵的方法简单一些: 时间复杂度:\(O(log(n))\) 空间复杂度:\(O(1)\) int

    1.5K10
    领券